Hugendubel.de - Das Lesen ist schön

Warenkorb

€ 0,00 0 Buch dabei,
portofrei
Analysis 1 als Buch
PORTO-
FREI

Analysis 1

Mit 250 Aufgaben und Lösungen. 'Springer-Lehrbuch'. 6. , durchgesehene Auflage. 161 Abbildungen.
Buch (kartoniert)
Bereits in 6. Auflage präsentiert das erfolgreiche Lehrbuch den Kanon der Analysis einer Veränderlichen. Durch die zahlreichen Beispiele und und Übungsaufgaben mit Lösungen eignet es sich bestens als Begleit-Literatur zu eine... weiterlesen
Buch

24,95*

inkl. MwSt.
Portofrei
Sofort lieferbar
Analysis 1 als Buch
Produktdetails
Titel: Analysis 1
Autor/en: Konrad Königsberger

ISBN: 354040371X
EAN: 9783540403715
Mit 250 Aufgaben und Lösungen.
'Springer-Lehrbuch'.
6. , durchgesehene Auflage.
161 Abbildungen.
Springer-Verlag GmbH

September 2003 - kartoniert - XIII

Beschreibung

Bereits in 6. Auflage präsentiert das erfolgreiche Lehrbuch den Kanon der Analysis einer Veränderlichen. Durch die zahlreichen Beispiele und und Übungsaufgaben mit Lösungen eignet es sich bestens als Begleit-Literatur zu einer Vorlesung, zum Selbststudium und zur Prüfungsvorbereitung. Die vielen historischen Anmerkungen und eingestreuten Perlen der klassischen Analysis geben diesem Lehrbuch seinen besonderen Reiz.

Inhaltsverzeichnis

1 Natürliche Zahlen und vollständige Induktion.- 1.1 Vollständige Induktion.- 1.2 Fakultät und Binomialkoeffizienten.- 1.3 Aufgaben.- 2 Reelle Zahlen.- 2.1 Die Körperstruktur von ?.- 2.2 Die Anordnung von ?.- 2.3 Die Vollständigkeit von ?.- 2.4 ? ist nicht abzählbar.- 2.5 Aufgaben.- 3 Komplexe Zahlen.- 3.1 Der Körper der komplexen Zahlen.- 3.2 Die komplexe Zahlenebene.- 3.3 Algebraische Gleichungen in ?.- 3.4 Die Unmöglichkeit einer Anordnung von ?.- 3.5 Aufgaben.- 4 Funktionen.- 4.1 Grundbegriffe.- 4.2 Polynome.- 4.3 Rationale Funktionen.- 4.4 Aufgaben.- 5 Folgen.- 5.1 Konvergenz von Flogen.- 5.2 Rechenregeln.- 5.3 Monotone Folgen.- 5.4 Eine Rekursionsfolge zur Berechnung von Quadratwurzeln.- 5.5 Der Satz von Bolzano-Weierstraß.- 5.6 Das Konvergenzkriterium von Bolzano-Cauchy. Nochmals die Vollständigkeit von ?.- 5.7 Uneigentliche Konvergenz.- 5.8 Aufgaben.- 6 Reihen.- 6.1 Konvergenz von Reihen.- 6.2 Konvergenzkriterien.- 6.3 Summierbare Familien.- 6.4 Potenzreihen.- 6.5 Aufgaben.- 7 Stetige Funktionen. Grenzwerte.- 7.1 Stetigkeit.- 7.2 Rechnen mit stetigen Funktionen.- 7.3 Erzeugung stetiger Funktionen durch normal konvergente Reihen.- 7.4 Stetige reelle Funktionen auf Intervallen. Der Zwischenwertsatz.- 7.5 Stetige Funktionen auf kompakten Mengen. Der Satz vom Maximum und Minimum.- 7.6 Anwendung: Beweis des Fundamentalsatzes der Algebra.- 7.7 Stetige Fortsetzung. Grenzwerte von Funktionen.- 7.8 Einseitige Grenzwerte. Uneigentliche Grenzwerte.- 7.9 Aufgaben.- 8 Die Exponentialfunktionund die trigonometrischen Funktionen.- 8.1 Definition der Exponentialfunktion.- 8.2 Die Exponentialfunktion für reelle Argumente.- 8.3 Der natürliche Logarithmus.- 8.4 Exponentialfunktionen zu allgemeinen Basen. Allgemeine Potenzen.- 8.5 Binomialreihen und Logarithmusreihe.- 8.6 Definition der trigonometrischen Funktionen.- 8.7 Nullstellen und Periodizität.- 8.8 Die Arcus-Funktionen.- 8.9 Polarkoordinaten komplexer Zahlen.- 8.10 Geometrie der Exponentialabbildung. Hauptzweig des komplexen Logarithmus und des Arcustangens.- 8.11 Die Zahl ?.- 8.12 Die hyperbolischen Funktionen.- 8.13 Aufgaben.- 9 Differentialrechnung.- 9.1 Die Ableitung einer Funktion.- 9.2 Ableitungsregeln.- 9.3 Mittelwertsatz und Schrankensatz.- 9.4 Beispiele und Anwendungen.- 9.5 Reihen differenzierbarer Funktionen.- 9.6 Ableitungen höherer Ordnung.- 9.7 Konvexität.- 9.8 Konvexe Funktionen und Ungleichungen.- 9.9 Fast überall differenzierbare Funktionen. Verallgemeinerter Schrankensatz.- 9.10 Der Begriff der Stammfunktion.- 9.11 Eine auf ganz ? stetige, nirgends differenzierbare Funktion.- 9.12 Aufgaben.- 10 Lineare Differentialgleichungen.- 10.1 Eindeutigkeitssatz und Dimensionsabschätzung.- 10.2 Ein Fundamentalsystem für die homogene Gleichung.- 10.3 Partikuläre Lösungen bei speziellen Inhomogenitäten.- 10.4 Anwendung auf Schwingungsprobleme.- 10.5 Partikuläre Lösungen bei allgemeinen Inhomogenitäten.- 10.6 Erweiterung des Lösungsbegriffes.- 10.7 Aufgaben.- 11 Integralrechnung.- 11.1 Treppenfunktionen und ihre Integration.- 11.2 Regelfunktionen.- 11.3 Integration der Regelfunktionen über kompakte Intervalle.- 11.4 Der Hauptsatz der Differential- und Integralrechnung. Stammfunktionen zu Regelfunktionen.- 11.5 Erste Anwendungen.- 11.6 Integration elementarer Funktionen.- 11.7 Integration normal konvergenter Reihen.- 11.8 Riemannsche Summen.- 11.9 Integration über nicht kompakte Intervalle.- 11.10 Die Eulersche Summationsformel.- 11.11 Aufgaben.- 12 Geometrie differenzierbarer Kurven.- 12.1 Parametrisierte Kurven. Grundbegriffe.- 12.2 Die Bogenlänge.- 12.3 Parameterwechsel.- 12.4 Krümmung ebener Kurven.- 12.5 Die Sektorfläche ebener Kurven.- 12.6 Kurven in Polarkoordinaten.- 12.7 Liftung und Windungzahlen.- 12.8 Noch ein Beweis des Fundamentalsatzes der Algebra.- 12.9 Geometrie der Planetenbewegung Die drei Keplerschen Gesetze.- 12.10 Aufgaben.- 13 Elementar integrierbare Differentialgleichungen.- 13.1 Wachstumsmodelle. Lineare und Bernoullische Gleichungen.- 13.2 Differentialgleichungen mit getrennten Veränderlichen.- 13.3 Nicht-lineare Schwingungen. Die Differentialgleichung
% MathType!MTEF!2!1!+-
% feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC
% vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz
% ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbb
% L8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpe
% pae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaam
% aaeaqbaaGcbaGafmiEaGNbamaacqGH9aqpcqWGMbGzcqGGOaakcqWG
% 4baEcqGGPaqkaaa!41D4!
$$
\ddot x = f(x)
$$.- 13.4 Aufgaben.- 14 Lokale Approximation von Funktionen. Taylorpolynome und Taylorreihen.- 14.1 Approximation durch Taylorpolynome.- 14.2 Taylorreihen. Rechnen mit Potenzreihen.- 14.3 Bernoulli-Zahlen und Cotangensreihe. Bernoulli-Polynome.- 14.4 Das Newton-Verfahren.- 14.5 Aufgaben.- 15 Globale Approximation von Funktionen. Gleichmäßige Konvergenz.- 15.1 Gleichmäßige Konvergenz.- 15.2 Vertauschungssätze.- 15.3 Kriterien für gelichmäßige Konvergenz.- 15.4 Anwendung: dei Eulerschen Formeln für ?(2n).- 15.5 Approximation durch Faltung mit Dirac-Folgen.- 15.6 Lokal gleichmäßige Konvergenz. Der Überdeckungssatz von Heine-Borel.- 15.7 Der Approximationssatz von Stone.- 15.8 Aufgaben.- 16 Approximation periodischer Funktionen. Fourierreihen.- 16.1 Der Approximationssatz von Fejér.- 16.2 Definition der Fourierreihen. Erste Beispiele und Anwendungen.- 16.3 Punktweise Konvergenz nach Dirichlet.- 16.4 Ein Beispiel von Fejér.- 16.5 Die Besselsche Approximation periodischer Funktionen.- 16.6 Fourierreihen stückweise stetig differenzierbarer Funktionen.- 16.7 Konvergenz im quadratischen Mittel. Die Parsevalsche Gleichung.- 16.8 Anwendung: das isoperimetrische Problem.- 16.9 Wärmeleitung in einem Ring. Die Thetafunktion.- 16.10 Die Poissonsche Summenformel.- 16.11 Aufgaben.- 17 Die Gammafunktion.- 17.1 Die Gammafunktion nach Gauß.- 17.2 Der Eindeutigkeitssatz der Gammafunktion von Bohr und Mollerup. Die Eulersche Integraldarstellung.- 17.3 Die Stirlingsche Formel.- 17.4 Aufgaben.- Biographische Notiz zu Ewer.- Lösungen zu den Aufgaben.- Literatur.- Bezeichnungen.- Namen- und Sachverzeichnis.

Mehr aus dieser Reihe

zurück
Ökonometrie
Buch (kartoniert)
von Ludwig Von Auer
Sportpsychologie
Buch (gebunden)
von Frank Hänsel, Sö…
Algebra
Buch (kartoniert)
von Jens Carsten Jan…
Thermodynamik
Buch (kartoniert)
von Peter Stephan, K…
Experimentalphysik 1
Buch (kartoniert)
von Wolfgang Demtröd…
vor

Entdecken Sie mehr

Servicehotline
089 - 70 80 99 47

Mo. - Fr. 8.00 - 20.00 Uhr
Sa. 10.00 - 20.00 Uhr
Filialhotline
089 - 30 75 75 75

Mo. - Sa. 9.00 - 20.00 Uhr
Bleiben Sie in Kontakt:
Sicher & bequem bezahlen:
akzeptierte Zahlungsarten: Überweisung, offene Rechnung,
Visa, Master Card, American Express, Paypal
Zustellung durch:
* Alle Preise verstehen sich inkl. der gesetzlichen MwSt. Informationen über den Versand und anfallende Versandkosten finden Sie hier.
** im Vergleich zum dargestellten Vergleichspreis.