Warenkorb
€ 0,00 0 Buch dabei,
portofrei
Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen als Buch
PORTO-
FREI

Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen

'Teubner Skripten zur Numerik'. Auflage 1994. Book.
Buch (kartoniert)
Ihr 10% Rabatt bei Hugendubel.de
 
10% Rabatt sichern mit Gutscheincode: XMAS10
 
Die bei der numerischen Simulation verschiedener physikalischer und techni scher Vorgange auftretenden Differentialgleichungen fUhren nach Linearisierung und Diskretisierung zu sehr groBen linearen Gleichungssystemen, deren Be handlung mittels tradit … weiterlesen
Buch

44,99 *

inkl. MwSt.
Portofrei
Lieferbar innerhalb von zwei bis drei Werktagen
Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen als Buch

Produktdetails

Titel: Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen
Autor/en: Michael Griebel

ISBN: 3519027186
EAN: 9783519027188
'Teubner Skripten zur Numerik'.
Auflage 1994.
Book.
Vieweg+Teubner Verlag

1. Januar 1994 - kartoniert - 188 Seiten

Beschreibung

Die bei der numerischen Simulation verschiedener physikalischer und techni scher Vorgange auftretenden Differentialgleichungen fUhren nach Linearisierung und Diskretisierung zu sehr groBen linearen Gleichungssystemen, deren Be handlung mittels traditioneller direkter oder iterativer Losungsverfahren selbst auf modernsten Computern entweder gar nicht, oder nur mit unertraglich groBem Rechenaufwand und langer Rechenzeit moglich sind. 1m letzten Jahrzehnt sind nun effiziente Verfahren entwickelt worden, die den Losungsvorgang entscheidend beschleunigen. Hierbei sind hauptsachlich Mehr gittermethoden sowie Multilevel-Vorkonditionierer zu nennen, beide mit je weils verschiedenen Herleitungs- und Betrachtungsweisen sowie unterschied lichen Beweismethoden. Daneben ist durch den Einsatz paralleler Rechen systeme eine weitere Beschleunigung des Losungsvorgangs moglich geworden. Hierbei haben sich Gebietszerlegungsverfahren, unter anderem in Verbindung mit oben erwahnten Methoden, als besonders geeignet erwiesen. In dies em Buch stellen wir nun eine neue Sichtweise und Interpretationsmoglich keit fUr Mehrgitterverfahren, Multilevel-Vorkonditionierer und Gebietszerle gungsmethoden fUr elliptische Probleme VOL Dazu verwenden wir ein Erzeu gendensystem, das die Knotenbasen verschiedener Diskretisierungslevel umfaBt. Der Ritz-Galerkin-Ansatz fiihrt dann zu einem semidefiniten Gleichungssystem mit optimaler Kondition der Ordnung 0(1), wenn man von den fiir Iterations verfahren i.a. bedeutungslosen verschwindenden Eigenwerten absieht. Die oben erwahnten effizienten Verfahren (Mehrgitter, Multilevel-Vorkonditionierer) las sen sich nun als traditionelle iterative Methoden (GauB-Seidel, Jacobi-Vorkon ditionierer) iiber diesem semidefiniten System interpretieren. Bei der Konver genzanalyse dieser modernen Methoden gehen jetzt im Prinzip die gleichen Terme ein, wie schon bei der Analyse traditioneller Iterationsverfahren.

Inhaltsverzeichnis

1 Einleitung.- 2 Das semidefinite System.- 2.1 Zerlegung des Approximationsraumes.- 2.2 Das Erzeugendensystem.- 2.3 Die Ritz-Galerkin-Diskretisierung und das semidefinite System.- 3 Iterative Methoden für das semidefinite System.- 3.1 Ein Überblick über iterative Methoden.- 3.2 Jacobi- und Gauß-Seidel-artige Iterationsverfahren.- 3.3 Zur Konvergenz der Verfahren.- 4 Gradientenorientierte Verfahren für das semidefinite System.- 4.1 Das Residuum und vorkonditionierte Gradientenverfahren.- 4.2 BPX-Vorkonditionierer und verwandte Vorkonditionierer.- 4.3 Konditionsbetrachtungen.- 4.4 Effiziente Realisierung.- 5 Levelweise Gauß-Seidel-Iteration für das semidefinite System.- 5.1 Levelorientierte Partitionierung des semidefiniten Systems.- 5.2 Gauß-Seidel-Iteration und Mehrgitterverfahren.- 5.3 Konvergenzbetrachtungen.- 6 Punktweise Gauß-Seidel-Iteration für das semidefinite System.- 6.1 Punktorientierte Partitionierung des semidefiniten Systems.- 6.2 Konvergenzbetrachtungen.- 7 Gebietsorientierte Block-Gauß-Seidel-Verfahren.- 7.1 Gebietsweise Blockpartitionierung des semidefiniten Systems.- 7.2 Zur Vorkonditionierung des Schur-Komplements.- 8 Numerische Experimente zur Konvergenz der Verfahren.- 9 Zur Parallelisierung.- 9.1 Parallelisierung levelartiger Algorithmen.- 9.2 Parallelisierung punkt- und gebietsorientierter Algorithmen.- 9.3 Aufwandsbetrachtungen.- 10 Zur Robustheit.- 10.1 Robustheit von Mehrgitterverfahren.- 10.2 Robustheit von Multilevel-Vorkonditionierern.- 10.3 Punktorientierte Verfahren und robuste Verallgemeinerungen.- 11 Mittels Semivergröberung erweitertes Erzeugendensystem.- 11.1 Das erweiterte Erzeugendensystem.- 11.2 Iterative Verfahren für das erweiterte semidefinite System und numerische Experimente zur Konvergenz der einzelnen Verfahren.- 11.2.1 Gradientenorientierte Verfahren und Vorkonditionierung.- 11.2.2 Levelorientierte Gauß-Seidel-Verfahren.- 11.2.3 Punkt- und gebietsorientierte iterative Methoden.- 12 Abschließende Bemerkungen.- Literatur.- Abbildungsverzeichnis.- Tabellenverzeichnis.
Servicehotline
089 - 70 80 99 47

Mo. - Fr. 8.00 - 20.00 Uhr
Sa. 10.00 - 20.00 Uhr
Filialhotline
089 - 30 75 75 75

Mo. - Sa. 9.00 - 20.00 Uhr
Bleiben Sie in Kontakt:
Sicher & bequem bezahlen:
akzeptierte Zahlungsarten: Überweisung, offene Rechnung,
Visa, Master Card, American Express, Paypal
Zustellung durch:
* Alle Preise verstehen sich inkl. der gesetzlichen MwSt. Informationen über den Versand und anfallende Versandkosten finden Sie hier.
Artikel mit dem Hinweis "Pünktlich zum Fest" werden an Lieferadressen innerhalb Deutschlands rechtzeitig zum 24.12.2018 geliefert.
** Deutschsprachige eBooks und Bücher dürfen aufgrund der in Deutschland geltenden Buchpreisbindung und/oder Vorgaben von Verlagen nicht rabattiert werden. Soweit von uns deutschsprachige eBooks und Bücher günstiger angezeigt werden, wurde bei diesen kürzlich von den Verlagen der Preis gesenkt oder die Buchpreisbindung wurde für diese Titel inzwischen aufgehoben. Angaben zu Preisnachlässen beziehen sich auf den dargestellten Vergleichspreis.