Warenkorb
€ 0,00 0 Buch dabei,
portofrei
Introduction to Quadratic Forms als Buch
PORTO-
FREI

Introduction to Quadratic Forms

'Classics in Mathematics (CIM)'. Auflage 2000. Book. Sprache: Englisch.
Buch (kartoniert)
From the reviews: "O'Meara treats his subject from this point of view (of the interaction with algebraic groups). He does not attempt an encyclopedic coverage ...nor does he strive to take the reader to the frontiers of knowledge... . Instead he has … weiterlesen
Dieses Buch ist auch verfügbar als:
Buch

58,99 *

inkl. MwSt.
Portofrei
Sofort lieferbar
Introduction to Quadratic Forms als Buch

Produktdetails

Titel: Introduction to Quadratic Forms
Autor/en: O. Timothy O'Meara

ISBN: 3540665641
EAN: 9783540665649
'Classics in Mathematics (CIM)'.
Auflage 2000.
Book.
Sprache: Englisch.
Springer Berlin Heidelberg

14. Dezember 1999 - kartoniert - 360 Seiten

Beschreibung

From the reviews: "O'Meara treats his subject from this point of view (of the interaction with algebraic groups). He does not attempt an encyclopedic coverage ...nor does he strive to take the reader to the frontiers of knowledge... . Instead he has given a clear account from first principles and his book is a useful introduction to themodern viewpoint and literature. In fact it presupposes only undergraduate algebra (up to Galois theory inclusive)... The book is lucidly written and can be warmly recommended.J.W.S. Cassels, The Mathematical Gazette, 1965"Anyone who has heard O'Meara lecture will recognize in every page of this book the crispness and lucidity of the author's style;... The organization and selection of material is superb... deserves high praise as an excellent example of that too-rare type of mathematical exposition combining conciseness with clarity...R. Jacobowitz, Bulletin of the AMS, 1965

Inhaltsverzeichnis

Prerequisites ad Notation Part One: Arithmetic Theory of Fields
I Valuated Fields
Valuations
Archimedean Valuations
Non-Archimedean valuations
Prolongation of a complete valuation to a finite extension
Prolongation of any valuation to a finite separable extension
Discrete valuations
II Dedekind Theory of Ideals Dedekind axioms for S
Ideal theory
Extension fields
III Fields of Number Theory
Rational global fields
Local fields
Global fields
Part Two: Abstract Theory of Quadratic Forms
VI Quadratic Forms and the Orthogonal Group
Forms, matrices and spaces
Quadratic spaces
Special subgroups of On(V)
V The Algebras of Quadratic Forms
Tensor products
Wedderburn's theorem on central simple algebras
Extending the field of scalars
The clifford algebra
The spinor norm
Special subgroups of On(V)
Quaternion algebras
The Hasse algebra
VI The Equivalence of Quadratic Forms
Complete archimedean fields
Finite fields
Local fields
Global notation
Squares and norms in global fields
Quadratic forms over global fields
VII Hilbert's Reciprocity Law
Proof of the reciprocity law
Existence of forms with prescribed local behavior
The quadratic reciprocity law
Part Four: Arithmetic Theory of Quadratic Forms over Rings
VIII Quadratic Forms over Dedekind Domains
Abstract lattices
Lattices in quadratic spaces
IX Integral Theory of Quadratic Forms over Local Fields
Generalities
Classification of lattices over non-dyadic fields
Classification of Lattices over dyadic fields
Effective determination of the invariants
Special subgroups of On(V)
X Integral Theory of Quadratic Forms over Global Fields
Elementary properties of the orthogonal group over arithmetic fields
The genus and the spinor genus
Finiteness of class number
The class and the spinor genus in the indefinite case
The indecomposable splitting of a definite lattice
Definite unimodular lattices over the rational integers
Bibliography
Index Bibliography
Index

Pressestimmen

"The exposition follows the tradition of the lectures of Emil Artin who enjoyed developing a subject from first principles and devoted much research to finding the simplest proofs at every stage." - American Mathematical Monthly
Servicehotline
089 - 70 80 99 47

Mo. - Fr. 8.00 - 20.00 Uhr
Sa. 10.00 - 20.00 Uhr
Filialhotline
089 - 30 75 75 75

Mo. - Sa. 9.00 - 20.00 Uhr
Bleiben Sie in Kontakt:
Sicher & bequem bezahlen:
akzeptierte Zahlungsarten: Überweisung, offene Rechnung,
Visa, Master Card, American Express, Paypal
Zustellung durch:
* Alle Preise verstehen sich inkl. der gesetzlichen MwSt. Informationen über den Versand und anfallende Versandkosten finden Sie hier.
** Deutschsprachige eBooks und Bücher dürfen aufgrund der in Deutschland geltenden Buchpreisbindung und/oder Vorgaben von Verlagen nicht rabattiert werden. Soweit von uns deutschsprachige eBooks und Bücher günstiger angezeigt werden, wurde bei diesen kürzlich von den Verlagen der Preis gesenkt oder die Buchpreisbindung wurde für diese Titel inzwischen aufgehoben. Angaben zu Preisnachlässen beziehen sich auf den dargestellten Vergleichspreis.