Hugendubel.de - Das Lesen ist schön

Warenkorb

€ 0,00 0 Buch dabei,
portofrei
50% und mehr sparen mit den eBook Schnäppchen der Woche >>
The Geometry of Higher-Order Lagrange Spaces als Buch
PORTO-
FREI

The Geometry of Higher-Order Lagrange Spaces

von R. Miron
Applications to Mechanics and Physics. 'Fundamental Theories of Physics'. Auflage 1997. Book. Sprache:…
Buch (gebunden)
This monograph is mostly devoted to the problem of the geome­ trizing of Lagrangians which depend on higher order accelerations. It naturally prolongs the theme of the monograph "The Geometry of La­ grange spaces: Theory and Applications", ... weiterlesen
Dieses Buch ist auch verfügbar als:
Buch

217,49*

inkl. MwSt.
Portofrei
Lieferbar innerhalb von zwei bis drei Werktagen
The Geometry of Higher-Order Lagrange Spaces als Buch
Produktdetails
Titel: The Geometry of Higher-Order Lagrange Spaces
Autor/en: R. Miron

ISBN: 079234393X
EAN: 9780792343936
Applications to Mechanics and Physics.
'Fundamental Theories of Physics'.
Auflage 1997.
Book.
Sprache: Englisch.
Springer Netherlands

31. Januar 1997 - gebunden - 356 Seiten

Beschreibung

This monograph is mostly devoted to the problem of the geome­ trizing of Lagrangians which depend on higher order accelerations. It naturally prolongs the theme of the monograph "The Geometry of La­ grange spaces: Theory and Applications", written together with M. Anastasiei and published by Kluwer Academic Publishers in 1994. The existence of Lagrangians of order k > 1 has been contemplated by mechanicists and physicists for a long time. Einstein had grasped their presence in connection with the Brownian motion. They are also present in relativistic theories based on metrics which depend on speeds and accelerations of particles or in the Hamiltonian formulation of non­ linear systems given by Korteweg-de Vries equations. There resulted from here the methods to be adopted in their theoretical treatment. One is based on the variational problem involving the integral action of the Lagrangian. A second one is derived from the axioms of Analytical Mechanics involving the Poincare-Cartan forms. The geometrical methods based on the study of the geometries of higher order could invigorate the whole theory. This is the way adopted by us in defining and studying the Lagrange spaces of higher order. The problems raised by the geometrization of Lagrangians of order k > 1 investigated by many scholars: Ch. Ehresmann, P. Libermann, J. Pommaret; J.T. Synge, M. Crampin, P. Saunders; G.S. Asanov, P.Aringazin; I. Kolar, D. Krupka; M. de Leon, W. Sarlet, P. Cantrjin, H. Rund, W.M. Tulczyjew, A. Kawaguchi, K. Yano, K. Kondo, D.

Inhaltsverzeichnis

Preface. 1. Lagrange Spaces of Order 1. 2. The Geometry of 2-Osculator Bundle. 3. N-Linear Connections. 4. Lagrangians of Second Order. Variational Problem. Nöther Type Theorems. 5. Second Order Lagrange Spaces. 6. Geometry of the k-Osculator Bundle. 7. Linear Connections of OsckM. 8. Lagrangians of Order k. Applications to Higher-Order Analytical Mechanics. 9. Prolongation of the Riemannian, Finslerian and Lagrangian Structures to the k-Osculator Bundle. 10. Higher Order Lagrange Spaces. 11. Subspaces in Higher Order Lagrange Spaces. 12. Gauge Theory in the Higher Order Lagrange Spaces. References. Index.
Servicehotline
089 - 70 80 99 47

Mo. - Fr. 8.00 - 20.00 Uhr
Sa. 10.00 - 20.00 Uhr
Filialhotline
089 - 30 75 75 75

Mo. - Sa. 9.00 - 20.00 Uhr
Bleiben Sie in Kontakt:
Sicher & bequem bezahlen:
akzeptierte Zahlungsarten: Überweisung, offene Rechnung,
Visa, Master Card, American Express, Paypal
Zustellung durch:
* Alle Preise verstehen sich inkl. der gesetzlichen MwSt. Informationen über den Versand und anfallende Versandkosten finden Sie hier.
** im Vergleich zum dargestellten Vergleichspreis.