Warenkorb
€ 0,00 0 Buch dabei,
portofrei
Path Integrals in Field Theory als Buch
PORTO-
FREI

Path Integrals in Field Theory

An Introduction. 'Advanced Texts in Physics'. Softcover reprint of the original 1st ed. 2004. Book.…
Buch (kartoniert)
Ihr 12%-Rabatt auf alle Spielwaren, Hörbücher, Filme, Musik u.v.m
 
12% Rabatt sichern mit Gutscheincode: SONNE12
 
Concise textbook intended as a primer on path integral formalism both in classical and quantum field theories, although emphasis is on the latter. It is ideally suited as an intensive one-semester course, delivering the basics needed by readers to fo … weiterlesen
Dieses Buch ist auch verfügbar als:
Buch

63,99*

inkl. MwSt.
Portofrei
Lieferbar innerhalb von zwei bis drei Werktagen
Path Integrals in Field Theory als Buch

Produktdetails

Titel: Path Integrals in Field Theory
Autor/en: Ulrich Mosel

ISBN: 3540403825
EAN: 9783540403821
An Introduction.
'Advanced Texts in Physics'.
Softcover reprint of the original 1st ed. 2004.
Book.
Sprache: Englisch.
Springer Berlin Heidelberg

9. September 2003 - kartoniert - 228 Seiten

Beschreibung

Concise textbook intended as a primer on path integral formalism both in classical and quantum field theories, although emphasis is on the latter. It is ideally suited as an intensive one-semester course, delivering the basics needed by readers to follow developments in field theory. 'Path Integrals in Field Theory' paves the way for both more rigorous studies in fundamental mathematical issues as well as for applications in hadron, particle and nuclear physics, thus addressing students in mathematical and theoretical physics alike. Assuming some background in relativistic quantum theory (but none in field theory), it complements the authors monograph Fields, Symmetries, and Quarks (Springer, 1999).

Inhaltsverzeichnis

I Non-Relativistic Quantum Theory.- 1 The Path Integral in Quantum Theory.
- 1.1 Propagator of the Schrödinger Equation.
- 1.2 Propagator as Path Integral.
- 1.3 Quadratic Hamiltonians.
- 1.3.1 Cartesian Metric.
- 1.3.2 Non-Cartesian Metric.
- 1.4 Classical Interpretation.- 2 Perturbation Theory.
- 2.1 Free Propagator.
- 2.2 Perturbative Expansion.
- 2.3 Application to Scattering.- 3 Generating Functionals.
- 3.1 Groundstate-to-Groundstate Transitions.
- 3.1.1 Generating Functional.
- 3.2 Functional Derivatives of Gs-Gs Transition Amplitudes.- II Relativistic Quantum Field Theory.- 4 Relativistic Fields.
- 4.1 Equations of Motion.
- 4.1.1 Examples.
- 4.2 Symmetries and Conservation Laws.
- 4.2.1 Geometrical Space-Time Symmetries.
- 4.2.2 Internal Symmetries.- 5 Path Integrals for Scalar Fields.
- 5.1 Generating Functional for Fields.
- 5.1.1 Euclidean Representation.- 6 Evaluation of Path Integrals.
- 6.1 Free Scalar Fields.
- 6.1.1 Generating Functional.
- 6.1.2 Feynman Propagator.
- 6.1.3 Gaussian Integration.
- 6.2 Interacting Scalar Fields.
- 6.2.1 Stationary Phase Approximation.
- 6.2.2 Numerical Evaluation of Path Integrals.
- 6.2.3 Real Time Formalism.- 7 Transition Rates and Green's Functions.
- 7.1 Scattering Matrix.
- 7.2 Reduction Theorem.
- 7.2.1 Canonical Field Quantization.
- 7.2.2 Derivation of the Reduction Theorem.- 8 Green's Functions.
- 8.1 n-point Green's Functions.
- 8.1.1 Momentum Representation.
- 8.1.2 Operator Representations.
- 8.2 Free Scalar Fields.
- 8.2.1 Wick's Theorem.
- 8.2.2 Feynman Rules.
- 8.3 Interacting Scalar Fields.
- 8.3.1 Perturbative Expansion.- 9 Perturbative ?4 Theory.
- 9.1 Perturbative Expansion of the Generating Function.
- 9.1.1 Generating Functional up to O(g).
- 9.2 Two-Point Function.
- 9.2.1 Terms up to O(g0).
- 9.2.2 Terms up to O(g).
- 9.2.3 Terms up to O(g2).
- 9.3 Four-Point Function.
- 9.3.1 Terms up to O(g).
- 9.3.2 Terms up to O(g2).
- 9.4 Divergences in n-Point Functions.
- 9.4.1 Power Counting.
- 9.4.2 Dimensional Regularization of ?4 Theory.
- 9.4.3 Renormalization.- 10 Green's Functions for Fermions.
- 10.1 Grassmann Algebra.
- 10.1.1 Derivatives.
- 10.1.2 Integration.
- 10.2 Green's Functions for Fermions.
- 10.2.1 Generating Functional for Fermions.
- 10.2.2 Reduction Theorem for Fermions.
- 10.2.3 Green's Functions.- 11 Interacting Fields.
- 11.1 Feynman Rules.
- 11.1.1 Fermion Loops.
- 11.2 Wick's Theorem.
- 11.3 Bosonization of Yukawa Theory.
- 11.3.1 Perturbative Expansion.- III Gauge Field Theory.- 12 Path Integrals for QED.
- 12.1 Gauge Invariance in Abelian Free Field Theories.
- 12.2 Generating Functional.
- 12.3 Gauge Invariance in QED.
- 12.4 Feynman Rules of QED.- 13 Path Integrals for Gauge Fields.
- 13.1 Non-Abelian Gauge Fields.
- 13.2 Generating Functional.
- 13.3 Gauge Fixing of L.
- 13.4 Faddeev-Popov Determinant.
- 13.4.1 Explicit Forms of the FP Determinant.
- 13.4.2 Ghost Fields.
- 13.5 Feynman Rules.- 14 Examples for Gauge Field Theories.
- 14.1 Quantum Chromodynamics.
- 14.2 Electroweak Interactions.- Units and Metric.- A.1 Units.- A.2 Metric and Notation.- Functionals.- B.1 Definition.- B.2 Functional Integration.- B.2.1 Gaussian Integrals.- B.3 Functional Derivatives.- Renormalization Integrals.- Gaussian Grassmann Integration.- References.

Pressestimmen

From the reviews:

"Mosel's book, described as an introduction, is aimed at graduate students and research workers in particle physics. ... in about 200 pages the reader has the chance to learn in some detail about a most important area of modern physics. The subject is tough but the style is clear and pedagogic, results for the most part being derived explicitly. ... [It] is clearly the work of a man with considerable teaching experience and is recommended as a readable and helpful account of a rather non-trivial subject." (Lewis Ryder, Journal of Physics, Vol. 37(25), 2004)

"This book is an introduction to path integral methods in quantum theory. It is divided into three parts devoted correspondingly to nonrelativistic quantum theory, quantum field theory and gauge theory. ... in this book the author has achieved a reasonable compromise between compactness and profoundness. From one side, he avoided many technical details and concentrated on the main points of the path integral method. From the other side, the principal ideas and logical structure of the theory are made clear, contrary to the pragmatic, recipe-like style of the presentation pf path integral methods in many books on quantum field theory. The book is aimed at graduate students and physicists who need a working knowledge of field theory methods for applications in hadron, particle and nuclear physics." (Michael B. Mensky, Zentralblatt MATH, Vol. 1037(12), 2004)

"There is no shortage of books on field theory ... but in this book Ulrich Mosel aims to provide a gentler introduction, more accessible to beginning students. In this he is largely successful, the book is a valuable addition to the literature. ... The level of rigour is quite sufficient for the prospective readership. ... The book is clearly written, well laid out and generally student-friendly ... . It will certainly be valuable to students and researchers ... ." (Professor T. W. B. Kibble, Contemporary Physics, Vol. 46 (4), 2005)

"This short and concise textbook is intended as a primer on path integral formalism both in classical and quantum field theories ... . It is ideally suited as an intensive one-semester course, delivering the basics needed by readers to follow developments in field theory. ... paves the way for both more rigorous studies in fundamental mathematical issues as well as for applications in hadron, particle and nuclear physics, thus addressing students in mathematical and theoretical physics alike." (Revista Espanola de Fisica, Vol. 17 (6), 2003)

"This is an introductory book on path integral methods in field theories, aimed at graduate students and physicists with a working knowledge of field theory and its applications in particle and nuclear physics." (Lewis H. Ryder, Mathematical Reviews, Issue 2006 e)
Servicehotline
089 - 70 80 99 47

Mo. - Fr. 8.00 - 20.00 Uhr
Sa. 10.00 - 20.00 Uhr
Filialhotline
089 - 30 75 75 75

Mo. - Sa. 9.00 - 20.00 Uhr
Bleiben Sie in Kontakt:
Sicher & bequem bezahlen:
akzeptierte Zahlungsarten: Überweisung, offene Rechnung,
Visa, Master Card, American Express, Paypal
Zustellung durch:
* Alle Preise verstehen sich inkl. der gesetzlichen MwSt. Informationen über den Versand und anfallende Versandkosten finden Sie hier.
** Deutschsprachige eBooks und Bücher dürfen aufgrund der in Deutschland geltenden Buchpreisbindung und/oder Vorgaben von Verlagen nicht rabattiert werden. Soweit von uns deutschsprachige eBooks und Bücher günstiger angezeigt werden, wurde bei diesen kürzlich von den Verlagen der Preis gesenkt oder die Buchpreisbindung wurde für diese Titel inzwischen aufgehoben. Angaben zu Preisnachlässen beziehen sich auf den dargestellten Vergleichspreis.