Warenkorb
€ 0,00 0 Buch dabei,
portofrei
Introduction to Modeling of Transport Phenomena in Porous Media als Buch
PORTO-
FREI

Introduction to Modeling of Transport Phenomena in Porous Media

'Theory and Applications of Transport in Porous Media'. Softcover reprint of the original 1st ed. 1990. Book.…
Buch (kartoniert)
Ihr 12%-Rabatt auf alle Spielwaren, Hörbücher, Filme, Musik u.v.m
 
12% Rabatt sichern mit Gutscheincode: KINDER12
 
The main purpose of this book is to provide the theoretical background to engineers and scientists engaged in modeling transport phenomena in porous media, in connection with various engineering projects, and to serve as a text for senior and graduat… weiterlesen
Dieses Buch ist auch verfügbar als:
Buch

130,99*

inkl. MwSt.
Portofrei
Lieferbar innerhalb von zwei bis drei Werktagen
Introduction to Modeling of Transport Phenomena in Porous Media als Buch

Produktdetails

Titel: Introduction to Modeling of Transport Phenomena in Porous Media
Autor/en: Y. Bachmat, Jacob Bear, J. Bear

ISBN: 079231106X
EAN: 9780792311065
'Theory and Applications of Transport in Porous Media'.
Softcover reprint of the original 1st ed. 1990.
Book.
Sprache: Englisch.
Springer Netherlands

31. Mai 1991 - kartoniert - 580 Seiten

Beschreibung

The main purpose of this book is to provide the theoretical background to engineers and scientists engaged in modeling transport phenomena in porous media, in connection with various engineering projects, and to serve as a text for senior and graduate courses on transport phenomena in porous media. Such courses are taught in various disciplines, e. g. , civil engineering, chemical engineering, reservoir engineering, agricultural engineering and soil science. In these disciplines, problems are encountered in which various extensive quantities, e. g. , mass and heat, are transported through a porous material domain. Often the porous material contains several fluid phases, and the various extensive quantities are transported simultaneously throughout the multiphase system. In all these disciplines, management decisions related to a system's development and its operation have to be made. To do so, the 'manager', or the planner, needs a tool that will enable him to forecast the response of the system to the implementation of proposed management schemes. This forecast takes the form of spatial and temporal distributions of variables that describe the future state of the considered system. Pressure, stress, strain, density, velocity, solute concentration, temperature, etc. , for each phase in the system, and sometime for a component of a phase, may serve as examples of state variables. The tool that enables the required predictions is the model. A model may be defined as a simplified version of the real (porous medium) system that approximately simulates the excitation-response relations of the latter.

Inhaltsverzeichnis

A General Theory.- 1 The Porous Medium.- 1.1 Definition and Classification of Porous Media.- 1.1.1 Definition of a porous medium.- 1.1.2 Classification of porous media.- 1.1.3 Some geometrical characteristics of porous media.- 1.1.4 Homogeneity and isotropy of a porous medium.- 1.2 The Continuum Model of a Porous Medium.- 1.2.1 The need for a continuum approach.- 1.2.2 Representative Elementary Volume (REV).- 1.2.3 Selection of REV.- 1.2.4 Representative Elementary Area (REA).- 1.3 Macroscopic Values.- 1.3.1 Volume and mass averages.- 1.3.2 Areal averages.- 1.3.3 Relationship between volume and areal averages.- 1.4 Higher-Order Averaging.- 1.4.1 Smoothing out macroscopic heterogeneity.- 1.4.2 The hydraulic approach.- 1.4.3 Compartmental models.- 1.5 Multicontinuum Models.- 1.5.1 Fractured porous media.- 1.5.2 Multilayer systems.- 2 Macroscopic Description of Transport Phenomena in Porous Media.- 2.1 Elements of Kinematics of Continua.- 2.1.1 Points and particles.- 2.1.2 Coordinates.- 2.1.3 Displacement and strain.- 2.1.4 Processes.- 2.1.5 Material derivative.- 2.1.6 Velocities.- 2.1.7 Flux and discharge.- 2.1.8 Gauss' theorem.- 2.1.9 Reynolds' transport theorem.- 2.1.10 Green's vector theorem.- 2.1.11 Pathlines, transport lines and transport functions.- 2.1.12 Velocity potential and complex potential.- 2.1.13 Movement of a front.- 2.2 Microscopic Balance and Constitutive Equations.- 2.2.1 Derivation of balance equations.- 2.2.2 Particular cases of balance equations.- 2.2.3 Constitutive equations.- 2.2.4 Coupled transport phenomena.- 2.2.5 Phase equilibrium.- 2.3 Averaging Rules.- 2.3.1 Average of a sum.- 2.3.2 Average of a product.- 2.3.3 Average of a time derivative.- 2.3.4 Average of a spatial derivative.- 2.3.5 Average of a spatial derivative of a scalar satisfying ?2G = 0.- 2.3.6 The coefficient T? .- 2.3.7 Average of a material derivative.- 2.4 Macroscopic Balance Equations.- 2.4.1 General balance equation.- 2.4.2 Mass balance of a phase.- 2.4.3 Volume balance of a phase.- 2.4.4 Mass balance equation for a component of a phase.- 2.4.5 Balance equation for the linear momentum of a phase.- 2.4.6 Heat balance for a phase and for a saturated porous medium.- 2.4.7 Mass balance in a fractured porous medium.- 2.4.8 Megascopic balance equation.- 2.5 Stress and Strain in a Porous Medium.- 2.5.1 Total stress.- 2.5.2 Effective stress.- 2.5.3 Forces acting on the solid matrix.- 2.6 Macroscopic Fluxes.- 2.6.1 Advective flux of a single Newtonian fluid.- 2.6.2 Advective fluxes in a multiphase system.- 2.6.3 Diffusive flux.- 2.6.4 Dispersive flux.- 2.6.5 Transport coefficients.- 2.6.6 Coupled fluxes.- 2.6.7 Macrodispersive flux.- 2.7 Macroscopic Boundary Conditions.- 2.7.1 Macroscopic boundary.- 2.7.2 The general boundary condition.- 2.7.3 Boundary conditions between two porous media in single phase flow.- 2.7.4 Boundary conditions between two porous media in multiphase flow.- 2.7.5 Boundary between two fluids.- 2.7.6 Boundary with a 'well mixed' domain.- 2.7.7 Boundary with fluid phase change.- 2.7.8 Boundary between a porous medium and an overlying body of flowing fluid.- 3 Mathematical Statement of a Transport Problem.- 3.1 Standard Content of a Problem Statement.- 3.1.1 Conceptual model.- 3.1.2 Mathematical model.- 3.2 Multicontinuum Models.- 3.3 Deletion of Nondominant Effects.- 3.3.1 Methodology.- 3.3.2 Examples.- 3.3.3 Concluding remarks.- B Application.- 4 Mass Transport of a Single Fluid Phase Under Isothermal Conditions.- 4.1 Mass Balance Equations.- 4.1.1 The basic equation.- 4.1.2 Stationary rigid porous medium.- 4.1.3 Deformable porous medium.- 4.2 Boundary Conditions.- 4.2.1 Boundary of prescribed pressure or head.- 4.2.2 Boundary of prescribed mass flux.- 4.2.3 Semipervious boundary.- 4.2.4 Discontinuity in solid matrix properties.- 4.2.5 Sharp interface between two fluids.- 4.2.6 Phreatic surface.- 4.2.7 Seepage face.- 4.3 Complete Mathematical Model.- 4.4 Inertial Effects.- 5 Mass Transport of Multiple Fluid Phases
Servicehotline
089 - 70 80 99 47

Mo. - Fr. 8.00 - 20.00 Uhr
Sa. 10.00 - 20.00 Uhr
Filialhotline
089 - 30 75 75 75

Mo. - Sa. 9.00 - 20.00 Uhr
Bleiben Sie in Kontakt:
Sicher & bequem bezahlen:
akzeptierte Zahlungsarten: Überweisung, offene Rechnung,
Visa, Master Card, American Express, Paypal
Zustellung durch:
* Alle Preise verstehen sich inkl. der gesetzlichen MwSt. Informationen über den Versand und anfallende Versandkosten finden Sie hier.
** im Vergleich zum dargestellten Vergleichspreis.