The third edition of a bestseller, this substantially expanded reference, now in two volumes, presents the latest polymer developments and most up-to-date applications of polymeric biomaterials in medicine. This volume addresses the processing of polymeric biomaterials into specific forms that ensure biocompatibility and biodegradability for various uses in the medical and pharmaceutical arenas. It covers applications such as drug delivery, tissue engineering, anticancer therapies, hydrogels, and bioartificial organs. This comprehensive resource includes state-of-the-art research and successful breakthroughs in applications that have occurred in the last ten years.
Inhaltsverzeichnis
Antithrombin-Heparin Complexes. Glucose-Sensitive Hydrogels. Advances in Polymeric and Lipid-Core Micelles as Drug Delivery Systems. Modular Biomimetic Drug Delivery Systems. Polymeric Nanoparticles for Drug Delivery. Drug Carrier Systems for Anticancer Agents. Application of Polymer Drugs to Medical Devices and Preparative Medicine. Polymer Implants for Intratumoral Drug Delivery and Cancer Therapy. Biological Stimulus-Responsive Hydrogels. Polymeric Materials for Surface Modification of Living Cells. Biomedical Applications of Shape Memory Polymers and Their Nanocomposites. Bioadhesive Drug Delivery Systems. Nanomedicines Coming of Age. Polymers for Myocardial Tissue Engineering. Acellular Tubular Grafts Constructed from Natural Materials in Vascular Tissue Engineering. pH-Responsive Polymers for Delivery of Nucleic Acid Therapeutics. Adhesive Biomaterials for Tissue Repair and Reconstruction. Polymeric Interactions with Drugs and Excipients. Manufacturing Multifunctional Scaffolds for Tissue Engineering. Virus-Based Nanoparticles as Drug Delivery Systems. Polymeric Biomaterials in Pulmonary Drug Delivery. Polymeric Gene Delivery Carriers for Pulmonary Diseases. Biomedical Application of Membranes in Bioartificial Organs and Tissue Engineering. Controlled Release Systems for Bone Regeneration. Controlled Release Systems Targeting Angiogenesis. Bioceramics for Development of Bioartificial Liver. Materials Biofunctionalization for Tissue Regeneration. Polymers-Based Devices for Dermal and Transdermal Delivery.