Warenkorb
€ 0,00 0 Buch dabei,
portofrei
Klick ins Buch Problems and Theorems in Classical Set Theory als Buch
PORTO-
FREI

Problems and Theorems in Classical Set Theory

'Problem Books in Mathematics'. Auflage 2006. Sprache: Englisch.
Buch (gebunden)
Ihr 10% Rabatt bei Hugendubel.de
 
10% Rabatt sichern mit Gutscheincode: XMAS10
 
This is the first comprehensive collection of problems in set theory. It contains well chosen sequences of exercises. Most of the problems are challenging and require work, wit, and inspiration. The book is destined to become a classic.
Dieses Buch ist auch verfügbar als:
Buch

53,49 *

inkl. MwSt.
Portofrei
Sofort lieferbar
Pünktlich zum Fest*
Problems and Theorems in Classical Set Theory als Buch

Produktdetails

Titel: Problems and Theorems in Classical Set Theory
Autor/en: Peter Komjath, Vilmos Totik

ISBN: 038730293X
EAN: 9780387302935
'Problem Books in Mathematics'.
Auflage 2006.
Sprache: Englisch.
Springer New York

2. Mai 2006 - gebunden - 528 Seiten

Beschreibung

This volume contains a variety of problems from classical set theory and represents the first comprehensive collection of such problems. Many of these problems are also related to other fields of mathematics, including algebra, combinatorics, topology and real analysis. Rather than using drill exercises, most problems are challenging and require work, wit, and inspiration. They vary in difficulty, and are organized in such a way that earlier problems help in the solution of later ones. For many of the problems, the authors also trace the history of the problems and then provide proper reference at the end of the solution.

Inhaltsverzeichnis

Problems.
Operations on sets.
Countability.
Equivalence.
Continuum.
Sets of reals and real functions.
Ordered sets.
Order types.
Ordinals.
Ordinal arithmetic.
Cardinals.
Partially ordered sets.
Transfinite enumeration.
Euclidean spaces.
Zorn's lemma.
Hamel bases.
The continuum hypothesis.
Ultrafilters on ?.
Families of sets.
The Banach-Tarski paradox.
Stationary sets in ?1.
Stationary sets in larger cardinals.
Canonical functions.
Infinite graphs.
Partition relations.
?-systems.
Set mappings.
Trees.
The measure problem.
Stationary sets in [?]<?.
The axiom of choice.
Well-founded sets and the axiom of foundation.
Solutions.
Operations on sets.
Countability.
Equivalence.
Continuum.
Sets of reals and real functions.
Ordered sets.
Order types.
Ordinals.
Ordinal arithmetic.
Cardinals.
Partially ordered sets.
Transfinite enumeration.
Euclidean spaces.
Zorn's lemma.
Hamel bases.
The continuum hypothesis.
Ultrafilters on ?.
Families of sets.
The Banach-Tarski paradox.
Stationary sets in ?1.
Stationary sets in larger cardinals.
Canonical functions.
Infinite graphs.
Partition relations.
?-systems.
Set mappings.
Trees.
The measure problem.
Stationary sets in [?]<?.
The axiom of choice.
Well-founded sets and the axiom of foundation.

Pressestimmen

From the reviews:
"The volume contains 1007 problems in (mostly combinatorial) set theory. As indicated by the authors, "most of classical set theory is covered, classical in the sense that independence methods are not used, but classical also in the sense that most results come from the period, say, 1920--1970. Many problems are also related to other fields of mathematics such as algebra, combinatorics, topology and real analysis." And indeed the topics covered include applications of Zorn's lemma, Euclidean spaces, Hamel bases, the Banach-Tarski paradox and the measure problem. The statement of the problems, which are distributed among 31 chapters, takes 132 pages, and the (fairly detailed) solutions (together with some references) another 357 pages. Some problems are elementary but most of them are challenging. For example, in Chapter 29 the reader is asked in Problem 1 to show that $[\lambda]^{<\kappa}$ is the union of $\kappa$ bounded sets, and in Problem 20 to prove Baumgartner's result that every closed unbounded subset of $[\omega_2]^{<\aleph_1}$ is of maximal cardinality $\aleph_2^{\aleph_0}$. This is a welcome addition to the literature, which should be useful to students and researchers alike." (Pierre Matet, Mathematical Reviews)
"The book is well written and self contained, a choice collection of hundreds of tastefully selected problems related to classical set theory, a wealth of naturally arising, simply formulated problems ... . It is certainly available to students of mathematics major even in their undergraduate years. The solutions contain the right amount of details for the targeted readership. ... This is a unique book, an excellent source to review the fundamentals of classical set theory, learn new tricks, discover more and more on the field." (Tamás Erdélyi, Journal of Approximation Theory, 2008)
Servicehotline
089 - 70 80 99 47

Mo. - Fr. 8.00 - 20.00 Uhr
Sa. 10.00 - 20.00 Uhr
Filialhotline
089 - 30 75 75 75

Mo. - Sa. 9.00 - 20.00 Uhr
Bleiben Sie in Kontakt:
Sicher & bequem bezahlen:
akzeptierte Zahlungsarten: Überweisung, offene Rechnung,
Visa, Master Card, American Express, Paypal
Zustellung durch:
* Alle Preise verstehen sich inkl. der gesetzlichen MwSt. Informationen über den Versand und anfallende Versandkosten finden Sie hier.
Artikel mit dem Hinweis "Pünktlich zum Fest" werden an Lieferadressen innerhalb Deutschlands rechtzeitig zum 24.12.2018 geliefert.
** Deutschsprachige eBooks und Bücher dürfen aufgrund der in Deutschland geltenden Buchpreisbindung und/oder Vorgaben von Verlagen nicht rabattiert werden. Soweit von uns deutschsprachige eBooks und Bücher günstiger angezeigt werden, wurde bei diesen kürzlich von den Verlagen der Preis gesenkt oder die Buchpreisbindung wurde für diese Titel inzwischen aufgehoben. Angaben zu Preisnachlässen beziehen sich auf den dargestellten Vergleichspreis.