€ 0,00 0 Buch dabei,
Philosophy of Geometry from Riemann to Poincaré als Buch

Philosophy of Geometry from Riemann to Poincaré

'Episteme'. Auflage 1978. Book. Sprache: Englisch.
Buch (gebunden)
Geometry has fascinated philosophers since the days of Thales and Pythagoras. In the 17th and 18th centuries it provided a paradigm of knowledge after which some thinkers tried to pattern their own metaphysical systems. But after the discovery of non … weiterlesen
Dieses Buch ist auch verfügbar als:

256,99 *

inkl. MwSt.
Lieferbar innerhalb von zwei bis drei Werktagen
Philosophy of Geometry from Riemann to Poincaré als Buch


Titel: Philosophy of Geometry from Riemann to Poincaré
Autor/en: R. Torretti

ISBN: 9027709203
EAN: 9789027709202
Auflage 1978.
Sprache: Englisch.
Springer Netherlands

30. November 1978 - gebunden - 480 Seiten


Geometry has fascinated philosophers since the days of Thales and Pythagoras. In the 17th and 18th centuries it provided a paradigm of knowledge after which some thinkers tried to pattern their own metaphysical systems. But after the discovery of non-Euclidean geometries in the 19th century, the nature and scope of geometry became a bone of contention. Philosophical concern with geometry increased in the 1920's after Einstein used Riemannian geometry in his theory of gravitation. During the last fifteen or twenty years, renewed interest in the latter theory -prompted by advances in cosmology -has brought geometry once again to the forefront of philosophical discussion. The issues at stake in the current epistemological debate about geometry can only be understood in the light of history, and, in fact, most recent works on the subject include historical material. In this book, I try to give a selective critical survey of modern philosophy of geometry during its seminal period, which can be said to have begun shortly after 1850 with Riemann's generalized conception of space and to achieve some sort of completion at the turn of the century with Hilbert's axiomatics and Poincare's conventionalism. The philosophy of geometry of Einstein and his contemporaries will be the subject of another book. The book is divided into four chapters. Chapter 1 provides back­ ground information about the history of science and philosophy.


1 / Background.- 1.0.1 Greek Geometry and Philosophy.- 1.0.2 Geometry in Greek Natural Science.- 1.0.3 Modern Science and the Metaphysical Idea of Space.- 1.0.4 Descartes' Method of Coordinates.- 2 / Non-Euclidean Geometries.- 2.1 Parallels.- 2.1.1 Euclid's Fifth Postulate.- 2.1.2 Greek Commentators.- 2.1.3 Wallis and Saccheri.- 2.1.4 Johann Heinrich Lambert.- 2.1.5 The Discovery of Non-Euclidean Geometry.- 2.1.6 Some Results of Bolyai-Lobachevsky Geometry.- 2.1.7 The Philosophical Outlook of the Founders of Non-Euclidean Geometry.- 2.2 Manifolds.- 2.2.1 Introduction.- 2.2.2 Curves and their Curvature.- 2.2.3 Gaussian Curvature of Surfaces.- 2.2.4 Gauss' Theorema Egregium and the Intrinsic Geometry of Surfaces.- 2.2.5 Riemann's Problem of Space and Geometry.- 2.2.6 The Concept of a Manifold.- 2.2.7 The Tangent Space.- 2.2.8 Riemannian Manifolds, Metrics and Curvature.- 2.2.9 Riemann's Speculations about Physical Space.- 2.2.10 Riemann and Herbart. Grassmann.- 2.3 Projective Geometry and Projective Metrics.- 2.3.1 Introduction.- 2.3.2 Projective Geometry: An Intuitive Approach.- 2.3.3 Projective Geometry: A Numerical Interpretation.- 2.3.4 Projective Transformations.- 2.3.5 Cross-ratio.- 2.3.6 Projective Metrics.- 2.3.7 Models.- 2.3.8 Transformation Groups and Klein's Erlangen Programme.- 2.3.9 Projective Coordinates for Intuitive Space.- 2.3.10 Klein's View of Intuition and the Problem of Space-Forms.- 3 / Foundations.- 3.1 Helmholtz's Problem of Space.- 3.1.1 Helmholtz and Riemann.- 3.1.2 The Facts which Lie at the Foundation of Geometry.- 3.1.3 Helmholtz's Philosophy of Geometry.- 3.1.4 Lie Groups.- 3.1.5 Lie's Solution of Helmholtz's Problem.- 3.1.6 Poincaré and Killing on the Foundations of Geometry.- 3.1.7 Hilbert's Group-Theoretical Characterization of the Euclidean Plane.- 3.2 Axiomatics.- 3.2.1 The Beginnings of Modern Geometrical Axiomatics.- 3.2.2 Why are Axiomatic Theories Naturally Abstract?.- 3.2.3 Stewart, Grassmann, Plücker.- 3.2.4 Geometrical Axiomatics before Pasch.- 3.2.5 Moritz Pasch.- 3.2.6 Giuseppe Peano.- 3.2.7 The Italian School. Pieri. Padoa.- 3.2.8 Hilbert's Grundlagen.- 3.2.9 Geometrical Axiomatics after Hilbert.- 3.2.10 Axioms and Definitions. Frege's Criticism of Hilbert.- 4 / Empiricism, Apriorism, Conventionalism.- 4.1 Empiricism in Geometry.- 4.1.1 John Stuart Mill.- 4.1.2 Friedrich Ueberweg.- 4.1.3 Benno Erdmann.- 4.1.4 Auguste Calinon.- 4.1.5 Ernst Mach.- 4.2 The Uproar of Boeotians.- 4.2.1 Hermann Lotze.- 4.2.2 Wilhelm Wundt.- 4.2.3 Charles Renouvier.- 4.2.4 Joseph Delboeuf.- 4.3 Russell's Apriorism of 1897.- 4.3.1 The Transcendental Approach.- 4.3.2 The 'Axioms of Projective Geometry'.- 4.3.3 Metrics and Quantity.- 4.3.4 The Axiom of Distance.- 4.3.5 The Axiom of Free Mobility.- 4.3.6 A Geometrical Experiment.- 4.3.7 Multidimensional Series.- 4.4 Henri Poincaré.- 4.4.1 Poincaré's Conventionalism.- 4.4.2 Max Black's Interpretation of Poincaré's Philosophy of Geometry.- 4.4.3 Poincaré's Criticism of Apriorism and Empiricism.- 4.4.4 The Conventionality of Metrics.- 4.4.5 The Genesis of Geometry.- 4.5.6 The Definition of Dimension Number.- 1. Mappings.- 2. Algebraic Structures. Groups.- 3. Topologies.- 4. Differentiable Manifolds.- Notes.- To Chapter 1.- To Chapter 2.- 2.1.- 2.2.- 2.3.- To Chapter 3.- 3.1.- 3.2.- To Chapter 4.- 4.1.- 4.2.- 4.3.- 4.4.- References.


`...a carefull and scholarly discussion of the history and philosophy of geometry from the 1850's, marked by Riemann's generalized conception of space, and ending with Hilbert's axiomatics and Poincaré's conventionalism at the beginning of the century.'
The Modern Schoolman

`This is a deeply learned, scrupulously careful, very informative book which was well worth writing... In sum, Toretti has written carefully, with much insight, deep and broad learning, and sober judgement on a topic of profound difficulty and interest.'
Australian Journal of Philosophy

`Torretti has written a very useful book which helps fill a large gap in the literature on the philosophy of mathematics.'
The Philosophical Quarterly

`It delves into the contributions of many neglected writers and dispells myths concerning the contributions of others, which have too often been perpetuated in the philosophical literature... I suggest that it deserves to become a standard word.'
089 - 70 80 99 47

Mo. - Fr. 8.00 - 20.00 Uhr
Sa. 10.00 - 20.00 Uhr
089 - 30 75 75 75

Mo. - Sa. 9.00 - 20.00 Uhr
Bleiben Sie in Kontakt:
Sicher & bequem bezahlen:
akzeptierte Zahlungsarten: Überweisung, offene Rechnung,
Visa, Master Card, American Express, Paypal
Zustellung durch:
* Alle Preise verstehen sich inkl. der gesetzlichen MwSt. Informationen über den Versand und anfallende Versandkosten finden Sie hier.
** Deutschsprachige eBooks und Bücher dürfen aufgrund der in Deutschland geltenden Buchpreisbindung und/oder Vorgaben von Verlagen nicht rabattiert werden. Soweit von uns deutschsprachige eBooks und Bücher günstiger angezeigt werden, wurde bei diesen kürzlich von den Verlagen der Preis gesenkt oder die Buchpreisbindung wurde für diese Titel inzwischen aufgehoben. Angaben zu Preisnachlässen beziehen sich auf den dargestellten Vergleichspreis.