Klick ins Buch Modern Multivariate Statistical Techniques als Buch (gebunden)
PORTO-
FREI

Modern Multivariate Statistical Techniques

Regression, Classification, and Manifold Learning. 1st ed. 2008, Corr. 2nd printing 2013. XXV, 733 p.…
Buch (gebunden)
Remarkable advances in computation and data storage and the ready availability of huge data sets have been the keys to the growth of the new disciplines of data mining and machine learning, while the enormous success of the Human Genome Project has o … weiterlesen
Dieser Artikel ist auch verfügbar als:
Buch (gebunden)

106,99 *

inkl. MwSt.
Portofrei
Lieferbar innerhalb von ein bis zwei Wochen
Modern Multivariate Statistical Techniques als Buch (gebunden)

Produktdetails

Titel: Modern Multivariate Statistical Techniques
Autor/en: Alan Julian Izenman

ISBN: 0387781889
EAN: 9780387781884
Regression, Classification, and Manifold Learning.
1st ed. 2008, Corr. 2nd printing 2013.
XXV, 733 p.
Sprache: Englisch.
Springer-Verlag New York Inc.

1. August 2008 - gebunden - 733 Seiten

Beschreibung

Remarkable advances in computation and data storage and the ready availability of huge data sets have been the keys to the growth of the new disciplines of data mining and machine learning, while the enormous success of the Human Genome Project has opened up the field of bioinformatics.
These exciting developments, which led to the introduction of many innovative statistical tools for high-dimensional data analysis, are described here in detail. The author takes a broad perspective; for the first time in a book on multivariate analysis, nonlinear methods are discussed in detail as well as linear methods. Techniques covered range from traditional multivariate methods, such as multiple regression, principal components, canonical variates, linear discriminant analysis, factor analysis, clustering, multidimensional scaling, and correspondence analysis, to the newer methods of density estimation, projection pursuit, neural networks, multivariate reduced-rank regression, nonlinear manifold learning, bagging, boosting, random forests, independent component analysis, support vector machines, and classification and regression trees. Another unique feature of this book is the discussion of database management systems.
This book is appropriate for advanced undergraduate students, graduate students, and researchers in statistics, computer science, artificial intelligence, psychology, cognitive sciences, business, medicine, bioinformatics, and engineering. Familiarity with multivariable calculus, linear algebra, and probability and statistics is required. The book presents a carefully-integrated mixture of theory and applications, and of classical and modern multivariate statistical techniques, including Bayesian methods. There are over 60 interesting data sets used as examples in the book, over 200 exercises, and many color illustrations and photographs.

Inhaltsverzeichnis

Preface. - Introduction and preview. - Data and databases. - Random vectors and matrices. - Nonparametric density estimation. - Multiple regression and model assessment. - Multivariate regression. - Linear dimensionality reduction. - Linear discriminant analysis. - Recursive partitioning and decision trees. - Artificial nueral networks. - Support vector machines. - Cluster analysis. - Multidimensional scaling and distance geometry. - Committee machines. - Nonlinear dimensionality reduction. - Wavelets. - Correspondence analysis. - Notation and mathematical results. - References.

Pressestimmen

From the reviews:

"This book will be enjoyed by those who wish to understand the current state of multivariate statistical analysis in an age of high-speed computation and large data sets. ... persons interested in learning new trends of multivariate methods would find Izenman's book very helpful. ... The full-color graphics is quite impressive - well done! There are numerous real-data examples from many scientific disciplines so that not only statisticians may find this book useful and interesting." (Simo Puntanen, International Statistical Review, Vol. 76 (3), 2008)

"The book describes how to manage data for maintaining and querying large databases. ... I recommend this book for advanced students in statistics and related profiles as, computer science, artificial intelligence, cognitive sciences, bio-informatics, and the involved different branches of engineering. More than 60 data sets are used for working out as examples. More than 200 exercises are presented in the book." (J. A. Rouen, Revista Investigación Operacional, Vol. 30 (2), 2009)

"For the first time in a book on multivariate analysis, nonlinear as well as linear methods are discussed in detail. ... Another unique feature of this book is the discussion of database management systems. This book is appropiate for advanced undergraduate students, graduate students, and researchers in statistics, computer science, artificial intelligence, psychology, cognitive sciences, business, medicine, bioinformatics and engineering. ... The book presents a carefully-integrated mixture of theory and applications, and of classical and modern multivariate statistical techniques, including Bayesian methods." (T. Postelnicu, Zentralblatt MATH, Vol. 1155, 2009)

"This monograph provides a comprehensive account of the development of multivariate statistical analysis powered by the explosion in the capability and speed of computers during the last four decades. It is written by an expert in the field. The book is suitable for very advanced undergraduate students and graduate students in statistics, but can also be used in a host of other areas ... where statistics plays a major role. ... Any researcher in multivariate statistical analysis should have this book in his personal library." (Steen Arne Andersson, Mathematical Reviews, Issue 2010 b) "...Exemplifies the transition of statistical science as a scientific discipline focused on testing to one focused on information and knowledge discovery. ...Acknowledges in a novel way the link between statistical science and computer science, artificial intelligence, and machine learning theory...This book implements an overhaul for teaching multivariate analysis..." (The American Statistician, February 2010, Vol. 64 No.1)

"The author of this well-written, encyclopaedic text of roughly 730 pages highlights data mining using huge data sets and aims to blend 'classical' multivariate topics (such as regression, principal components and linear discriminant analysis, clustering, multi-dimensional scaling and correspondence analysis) with more recent advances from the field of computational statistics (such as classification and regression trees, neural networks, support vector machines or topics around committee machines-bagging, boosting and random forests). It is noteworthy that some of the more classical methods are derived as special cases of a common theoretical framework: reduced rank regression, a field to which Professor Izenman already has contributed with his doctoral thesis back in 1972. ...Furthermore it is worth noting as well that the first chapter after the introductory overview deals with data, databases and database management-indicating the author's seriousness about data analysis in the presence of permanently growing magnitudes of data sets to analyse. ...Most chapters end with sections on software packages, and all chapters end with bibliographical notes and exercises; the final list of references contains 552 entri

Mehr aus dieser Reihe

zurück
Essential Statistical Inference
Buch (gebunden)
von Dennis D. Boos, …
Applied Bayesian Statistics
Buch (gebunden)
von Mary Kathryn Cow…
Optimization
Buch (gebunden)
von Kenneth Lange
Probability: A Graduate Course
Buch (gebunden)
von Allan Gut
An Introduction to Statistical Learning
Buch (gebunden)
von Gareth James, Da…
vor
Servicehotline
089 - 70 80 99 47

Mo. - Fr. 8.00 - 20.00 Uhr
Sa. 10.00 - 20.00 Uhr
Filialhotline
089 - 30 75 75 75

Mo. - Sa. 9.00 - 20.00 Uhr
Sicher & bequem bezahlen:
Bleiben Sie in Kontakt:
Hugendubel App
Zustellung durch:
1 Mängelexemplare sind Bücher mit leichten Beschädigungen, die das Lesen aber nicht einschränken. Mängelexemplare sind durch einen Stempel als solche gekennzeichnet. Die frühere Buchpreisbindung ist aufgehoben. Angaben zu Preissenkungen beziehen sich auf den gebundenen Preis eines mangelfreien Exemplars.

2 Diese Artikel unterliegen nicht der Preisbindung, die Preisbindung dieser Artikel wurde aufgehoben oder der Preis wurde vom Verlag gesenkt. Die jeweils zutreffende Alternative wird Ihnen auf der Artikelseite dargestellt. Angaben zu Preissenkungen beziehen sich auf den vorherigen Preis.

4 Der gebundene Preis dieses Artikels wird nach Ablauf des auf der Artikelseite dargestellten Datums vom Verlag angehoben.

5 Der Preisvergleich bezieht sich auf die unverbindliche Preisempfehlung (UVP) des Herstellers.

6 Der gebundene Preis dieses Artikels wurde vom Verlag gesenkt. Angaben zu Preissenkungen beziehen sich auf den vorherigen Preis.

7 Die Preisbindung dieses Artikels wurde aufgehoben. Angaben zu Preissenkungen beziehen sich auf den vorherigen Preis.

10 Ihr Gutschein TONIE10 gilt bis einschließlich 30.11.2020. Sie können den Gutschein ausschließlich online einlösen unter www.hugendubel.de. Keine Bestellung zur Abholung in der Buchhandlung möglich. Der Gutschein gilt nur auf Tonie-Figuren, Tonie-Transporter, Wandregale und Lauscher und nur solange der Vorrat reicht. Der Gutschein ist nicht mit anderen Gutscheinen und Geschenkkarten kombinierbar. Eine Barauszahlung ist nicht möglich. Ein Weiterverkauf und der Handel des Gutscheincodes sind nicht gestattet.

11 Bestellungen ins Ausland und der DHL-Paketversand sind von der kostenfreien Lieferung ausgeschlossen.

* Alle Preise verstehen sich inkl. der gesetzlichen MwSt. Informationen über den Versand und anfallende Versandkosten finden Sie hier.

*** Gilt für Bestellungen auf Hugendubel.de. Von dem verlängerten Rückgaberecht ausgeschlossen sind eBooks, Hörbuch Downloads, tolino select, das Leseglück-Abo, die eKidz.eu Apps sowie phase6 Apps. Das gesetzliche Widerrufsrecht bleibt hiervon unberührt.