Presents interplays between numerical approximation and statistical inference as a pathway to simple solutions to fundamental problems.
Inhaltsverzeichnis
1. Introduction; 2. Sobolev space basics; 3. Optimal recovery splines; 4. Numerical homogenization; 5. Operator adapted wavelets; 6. Fast solvers; 7. Gaussian fields; 8. Optimal recovery games on $\mathcal{H}^{s}_{0}(\Omega)$; 9. Gamblets; 10. Hierarchical games; 11. Banach space basics; 12. Optimal recovery splines; 13. Gamblets; 14. Bounded condition numbers; 15. Exponential decay; 16. Fast Gamblet Transform; 17. Gaussian measures, cylinder measures, and fields on $\mathcal{B}$; 18. Recovery games on $\mathcal{B}$; 19. Game theoretic interpretation of Gamblets; 20. Survey of statistical numerical approximation; 21. Positive definite matrices; 22. Non-symmetric operators; 23. Time dependent operators; 24. Dense kernel matrices; 25. Fundamental concepts.