A friendly introduction to Toeplitz theory and its applications throughout modern functional analysis.
Inhaltsverzeichnis
1. Why Toeplitz-Hankel? Motivations and panorama; 2. Hankel and Toeplitz - brother operators on the space H2; 3. H2 theory of Toeplitz operators; 4. Applications: Riemann-Hilbert, Wiener-Hopf, singular integral operators (SIO); 5. Toeplitz matrices: moments, spectra, asymptotics; Appendix A. Key notions of Banach spaces; Appendix B. Key notions of Hilbert spaces; Appendix C. An overview of Banach algebras; Appendix D. Linear operators; Appendix E. Fredholm operators and the Noether index; Appendix F. A brief overview of Hardy spaces; References; Notation; Index.