Comprehensive guide to stochastic processes. Accessible to beginning graduate students and researchers from applied disciplines.
Inhaltsverzeichnis
Preface; 1. Basic notions; 2. Brownian motion; 3. Martingales; 4. Markov properties of Brownian motion; 5. The Poisson process; 6. Construction of Brownian motion; 7. Path properties of Brownian motion; 8. The continuity of paths; 9. Continuous semimartingales; 10. Stochastic integrals; 11. Itô's formula; 12. Some applications of Itô's formula; 13. The Girsanov theorem; 14. Local times; 15. Skorokhod embedding; 16. The general theory of processes; 17. Processes with jumps; 18. Poisson point processes; 19. Framework for Markov processes; 20. Markov properties; 21. Applications of the Markov properties; 22. Transformations of Markov processes; 23. Optimal stopping; 24. Stochastic differential equations; 25. Weak solutions of SDEs; 26. The Ray-Knight theorems; 27. Brownian excursions; 28. Financial mathematics; 29. Filtering; 30. Convergence of probability measures; 31. Skorokhod representation; 32. The space C[0, 1]; 33. Gaussian processes; 34. The space D[0, 1]; 35. Applications of weak convergence; 36. Semigroups; 37. Infinitesimal generators; 38. Dirichlet forms; 39. Markov processes and SDEs; 40. Solving partial differential equations; 41. One-dimensional diffusions; 42. Lé vy processes; A. Basic probability; B. Some results from analysis; C. Regular conditional probabilities; D. Kolmogorov extension theorem; E. Choquet capacities; Frequently used notation; Index.