Initially published "to bridge the gap between theory and practice in extrusion," this 5th edition of Polymer Extrusion continues to serve the practicing polymer engineer and chemist, providing the theoretical and the practical tools for successful extrusion operations. In its revised and expanded form, it also incorporates the many new developments in extrusion theory and machinery over the last years.
Contents
· Different Types of Extruders
· Extruder Hardware
· Instrumentation and Control
· Fundamental Principles
· Important Polymer Properties
· Functional Process Analysis
· Extruder Screw Design
· Die Design
· Twin Screw Extruders
· Troubleshooting Extruders
· Modeling and Simulation of the Extrusion Process
Inhaltsverzeichnis
1;Preface to the Fifth Edition;6 2;1 Introduction;18 2.1;1.1 Basic Process;18 2.2;1.2 Scope of the Book;19 2.3;1.3 General Literature Survey;20 2.4;1.4 History of Polymer Extrusion;23 3;Part I Extrusion Machinery;28 3.1;2 Different Types of Extruders;30 3.1.1;2.1 The Single Screw Extruder;30 3.1.1.1;2.1.1 Basic Operation;32 3.1.1.2;2.1.2 Vented Extruders;33 3.1.1.3;2.1.3 Rubber Extruders;34 3.1.1.4;2.1.4 High-Speed Extrusion;39 3.1.1.4.1;2.1.4.1 Melt Temperature;39 3.1.1.4.1.1;2.1.4.2 Extruders without Gear Reducer;40 3.1.1.4.1.2;2.1.4.3 Energy Consumption;40 3.1.1.4.1.3;2.1.4.4 Change-over Resin Consumption;40 3.1.1.4.1.4;2.1.4.5Change-over Time and Residence Time;41 3.1.2;2.2 The Multiscrew Extruder;41 3.1.2.1;2.2.1 The Twin Screw Extruder;41 3.1.2.2;2.2.2 The Multiscrew Extruder With More Than Two Screws;42 3.1.2.3;2.2.3 The Gear Pump Extruder;44 3.1.3;2.3 Disk Extruders;45 3.1.3.1;2.3.1 Viscous Drag Disk Extruders;45 3.1.3.1.1;2.3.1.1 Stepped Disk Extruder;45 3.1.3.1.1.1;2.3.1.2 Drum Extruder;47 3.1.3.1.1.2;2.3.1.3 Spiral Disk Extruder;48 3.1.3.1.1.3;2.3.1.4 Diskpack Extruder;48 3.1.3.2;2.3.2 The Elastic Melt Extruder;52 3.1.3.3;2.3.3 Overview of Disk Extruders;53 3.1.4;2.4 Ram Extruders;53 3.1.4.1;2.4.1 Single Ram Extruders;54 3.1.4.1.1;2.4.1.1 Solid State Extrusion;55 3.1.4.2;2.4.2 Multi Ram Extruder;58 3.1.4.3;2.4.3Appendix 2.1;59 3.1.4.3.1;2.4.3.1Pumping Efficiency in Diskpack Extruder;59 3.2;3 Extruder Hardware;66 3.2.1;3.1 Extruder Drive;66 3.2.1.1;3.1.1 AC Motor Drive System;66 3.2.1.1.1;3.1.1.1 Mechanical Adjustable Speed Drive;67 3.2.1.1.1.1;3.1.1.2 Electric Friction Clutch Drive;67 3.2.1.1.1.2;3.1.1.3 Adjustable Frequency Drive;68 3.2.1.2;3.1.2 DC Motor Drive System;70 3.2.1.2.1;3.1.2.1 Brushless DC Drives;72 3.2.1.3;3.1.3 Hydraulic Drive System;72 3.2.1.4;3.1.4 Comparison of Various Drive Systems;75 3.2.1.5;3.1.5 Reducer;76 3.2.1.6;3.1.6 Constant Torque Characteristics;77 3.2.2;3.2 Thrust Bearing Assembly;78 3.2.3;3.3 Barrel and Feed Throat;81 3.2.4;3
.4 Feed Hopper;85 3.2.5;3.5 Extruder Screw;87 3.2.6;3.6 Die Assembly;89 3.2.6.1;3.6.1 Screens and Screen Changers;89 3.2.7;3.7 Heating and Cooling Systems;92 3.2.7.1;3.7.1 Electric Heating;92 3.2.7.1.1;3.7.1.1 Resistance Heating;92 3.2.7.1.1.1;3.7.1.2 Induction Heating;93 3.2.7.2;3.7.2 Fluid Heating;94 3.2.7.3;3.7.3 Extruder Cooling;94 3.2.7.4;3.7.4 Screw Heating and Cooling;97 3.3;4 Instrumentation and Control;102 3.3.1;4.1 Instrumentation Requirements;102 3.3.1.1;4.1.1 Most Important Parameters;103 3.3.2;4.2 Pressure Measurement;104 3.3.2.1;4.2.1 The Importance of Melt Pressure;104 3.3.2.2;4.2.2 Different Types of Pressure Transducers;105 3.3.2.3;4.2.3 Mechanical Considerations;109 3.3.2.4;4.2.4 Specifications;110 3.3.2.5;4.2.5 Comparisons of Different Transducers;113 3.3.3;4.3 Temperature Measurement;113 3.3.3.1;4.3.1 Methods of Temperature Measurement;114 3.3.3.2;4.3.2 Barrel Temperature Measurement;117 3.3.3.3;4.3.3 Stock Temperature Measurement;119 3.3.3.3.1;4.3.3.1 Ultrasound Transmission Time;122 3.3.3.3.1.1;4.3.3.2 Infrared Melt Temperature Measurement;123 3.3.4;4.4 Other Measurements;124 3.3.4.1;4.4.1 Power Measurement;124 3.3.4.2;4.4.2 Rotational Speed;126 3.3.4.3;4.4.3 Extrudate Thickness;127 3.3.4.4;4.4.4 Extrudate Surface Conditions;131 3.3.5;4.5 Temperature Control;133 3.3.5.1;4.5.1 On-Off Control;134 3.3.5.2;4.5.2 Proportional Control;136 3.3.5.2.1;4.5.2.1 Proportional-Only Control;136 3.3.5.2.1.1;4.5.2.2 Proportional and Integral Control;140 3.3.5.2.1.2;4.5.2.3 Proportional and Integral and Derivative Control;141 3.3.5.2.1.3;4.5.2.4 Dual Sensor Temperature Control;142 3.3.5.3;4.5.3 Controllers;143 3.3.5.3.1;4.5.3.1 Temperature Controllers;143 3.3.5.3.1.1;4.5.3.2 Power Controllers;143 3.3.5.3.1.2;4.5.3.3 Dual Output Controllers;145 3.3.5.4;4.5.4 Time-Temperature Characteristics;145 3.3.5.4.1;4.5.4.1 Thermal Characteristics of the System;145 3.3.5.4.1.1;4.5.4.2 Modeling of Response in Linear Systems;147 3.3.5.4.1.2;4.5.4.3 Temperature Characteristics
with On-Off Control;150 3.3.5.5;4.5.5 Tuning of the Controller Parameters;152 3.3.5.5.1;4.5.5.1 Performance Criteria;152 3.3.5.5.1.1;4.5.5.2 Effect of PID Parameters;153 3.3.5.5.1.2;4.5.5.3 Tuning Procedure When Process Model Is Unknown;154 3.3.5.5.1.3;4.5.5.4 Tuning Procedure When Process Model Is Known;155 3.3.5.5.1.4;4.5.5.5 Pre-Tuned Temperature Controllers;156 3.3.5.5.1.5;4.5.5.6 Self-Tuning Temperature Controllers;157 3.3.6;4.6 Total Process Control;157 3.3.6.1;4.6.1 True Total Extrusion Process Control;158 4;Part II Process Analysis;164 4.1;5 Fundamental Principles;166 4.1.1;5.1 Balance Equations;166 4.1.1.1;5.1.1 The Mass Balance Equation;166 4.1.1.2;5.1.2 The Momentum Balance Equation;167 4.1.1.3;5.1.3 The Energy Balance Equation;168 4.1.2;5.2 Basic Thermodynamics;170 4.1.2.1;5.2.1 Rubber Elasticity;174 4.1.2.2;5.2.2 Strain-Induced Crystallization;176 4.1.3;5.3 Heat Transfer;177 4.1.3.1;5.3.1 Conductive Heat Transfer;177 4.1.3.2;5.3.2 Convective Heat Transfer;178 4.1.3.3;5.3.3 Dimensionless Numbers;178 4.1.3.3.1;5.3.3.1 Dimensional Analysis;178 4.1.3.3.1.1;5.3.3.2 Important Dimensionless Numbers;180 4.1.3.4;5.3.4 Viscous Heat Generation;185 4.1.3.5;5.3.5 Radiative Heat Transport;186 4.1.3.5.1;5.3.5.1 Dielectric Heating;188 4.1.3.5.1.1;5.3.5.2 Microwave Heating;190 4.1.4;5.4 Basics of Devolatilization;192 4.1.4.1;5.4.1 Devolatilization of Particulate Polymer;197 4.1.4.2;5.4.2 Devolatilization of Polymer Melts;198 4.1.4.3;Appendix 5.1;202 4.1.4.4;Example: Pipe Flow of Newtonian Fluid;202 4.2;6 Important Polymer Properties;208 4.2.1;6.1 Properties of Bulk Materials;208 4.2.1.1;6.1.1 Bulk Density;208 4.2.1.2;6.1.2 Coefficient of Friction;211 4.2.1.3;6.1.3 Particle Size and Shape;217 4.2.1.4;6.1.4 Other Properties;218 4.2.2;6.2 Melt Flow Properties;219 4.2.2.1;6.2.1 Basic Definitions;219 4.2.2.2;6.2.2 Power Law Fluid;225 4.2.2.3;6.2.3 Other Fluid Models;230 4.2.2.4;6.2.4 Effect of Temperature and Pressure;231 4.2.2.5;6.2.5 Viscoelastic Behavior;235 4.2.2.6;6.2.6
Measurement of Flow Properties;237 4.2.2.6.1;6.2.6.1 Capillary Rheometer;237 4.2.2.6.1.1;6.2.6.2 Melt Index Tester;240 4.2.2.6.1.2;6.2.6.3 Cone and Plate Rheometer;244 4.2.2.6.1.3;6.2.6.4 Slit Die Rheometer;245 4.2.2.6.1.4;6.2.6.5 Dynamic Analysis;247 4.2.3;6.3 Thermal Properties;250 4.2.3.1;6.3.1 Thermal Conductivity;251 4.2.3.2;6.3.2 Specific Volume and Morphology;253 4.2.3.3;6.3.3 Specific Heat and Heat of Fusion;256 4.2.3.4;6.3.4 Specific Enthalpy;258 4.2.3.5;6.3.5 Thermal Diffusivity;259 4.2.3.6;6.3.6 Melting Point;262 4.2.3.7;6.3.7 Induction Time;262 4.2.3.8;6.3.8 Thermal Characterization;264 4.2.3.8.1;6.3.8.1 DTA and DSC;264 4.2.3.8.1.1;6.3.8.2 TGA;264 4.2.3.8.1.2;6.3.8.3 TMA;265 4.2.3.8.1.3;6.3.8.4 Other Thermal Characterization Techniques;265 4.2.4;6.4 Polymer Property Summary;265 4.3;7 Functional Process Analysis;272 4.3.1;7.1 Basic Screw Geometry;272 4.3.2;7.2 Solids Conveying;275 4.3.2.1;7.2.1 Gravity Induced Solids Conveying;276 4.3.2.1.1;7.2.1.1 Pressure Distribution;279 4.3.2.1.1.1;7.2.1.2 Flow Rate;282 4.3.2.1.1.2;7.2.1.3 Design Criteria;283 4.3.2.2;7.2.2 Drag Induced Solids Conveying;285 4.3.2.2.1;7.2.2.1 Frictional Heat Generation;299 4.3.2.2.1.1;7.2.2.2 Grooved Barrel Sections;301 4.3.2.2.1.2;7.2.2.3 Adjustable Grooved Barrel Extruders;313 4.3.2.2.1.3;7.2.2.4 Starve Feeding Versus Flood Feeding;319 4.3.3;7.3 Plasticating;322 4.3.3.1;7.3.1 Theoretical Model of Contiguous Solids Melting;323 4.3.3.1.1;7.3.1.1 Non-Newtonian, Non-Isothermal Case;333 4.3.3.2;7.3.2 Other Melting Models;343 4.3.3.3;7.3.3 Power Consumption in the Melting Zone;347 4.3.3.4;7.3.4 Computer Simulation;349 4.3.3.5;7.3.5 Dispersed Solids Melting;350 4.3.4;7.4 Melt Conveying;357 4.3.4.1;7.4.1 Newtonian Fluids;360 4.3.4.1.1;7.4.1.1 Effect of Flight Flanks;365 4.3.4.1.1.1;7.4.1.2 Effect of Clearance;367 4.3.4.1.1.2;7.4.1.3 Power Consumption in Melt Conveying;370 4.3.4.2;7.4.2 Power Law Fluids;373 4.3.4.2.1;7.4.2.1 One-Dimensional Flow;373 4.3.4.2.1.1;7.4.2.2 Two-Dimensional Flow;37
8 4.3.4.3;7.4.3 Non-Isothermal Analysis;384 4.3.4.3.1;7.4.3.1 Newtonian Fluids with Negligible Viscous Dissipation;384 4.3.4.3.1.1;7.4.3.2 Non-Isothermal Analysis of Power Law Fluids;391 4.3.4.3.1.2;7.4.3.3 Developing Temperatures;404 4.3.4.3.1.3;7.4.3.4 Estimating Fully Developed Melt Temperatures;421 4.3.4.3.1.4;7.4.3.5 Assumption of Stationary Screw and Rotating Barrel;428 4.3.5;7.5 Die Forming;436 4.3.5.1;7.5.1 Velocity and Temperature Profiles;437 4.3.5.2;7.5.2 Extrudate Swell;446 4.3.5.3;7.5.3 Die Flow Instabilities;448 4.3.5.3.1;7.5.3.1 Shark Skin;448 4.3.5.3.1.1;7.5.3.2 Melt Fracture;449 4.3.5.3.1.2;7.5.3.3 Draw Resonance;451 4.3.6;7.6 Devolatilization;452 4.3.7;7.7 Mixing;458 4.3.7.1;7.7.1 Mixing in Screw Extruders;459 4.3.7.1.1;7.7.1.1 Distributive Mixing in Screw Extruders;464 4.3.7.2;7.7.2 Static Mixing Devices;474 4.3.7.2.1;7.7.2.1 Geometry of Static Mixers;477 4.3.7.2.1.1;7.7.2.2 Functional Performance Characteristics;481 4.3.7.2.1.2;7.7.2.3 Miscellaneous Considerations;485 4.3.7.3;7.7.3 Dispersive Mixing;486 4.3.7.3.1;7.7.3.1 Solid-Liquid Systems;486 4.3.7.3.1.1;7.7.3.2 Liquid-Liquid System;488 4.3.7.4;7.7.4 Backmixing;500 4.3.7.4.1;7.7.4.1 Cross-Sectional Mixing and Axial Mixing;500 4.3.7.4.1.1;7.7.4.2 Residence Time Distribution;502 4.3.7.4.1.2;7.7.4.3 RTD in Screw Extruders;504 4.3.7.4.1.3;7.7.4.4 Methods to Improve Backmixing;505 4.3.7.4.1.4;7.7.4.5 Conclusions for Backmixing;507 4.3.8;Appendix 7.1;508 4.3.9;Appendix 7.2;509 4.3.10;Appendix 7.3;510 4.4;8 Extruder Screw Design;526 4.4.1;8.1 Mechanical Considerations;527 4.4.1.1;8.1.1 Torsional Strength of the Screw Root;527 4.4.1.2;8.1.2 Strength of the Screw Flight;529 4.4.1.3;8.1.3 Lateral Deflection of the Screw;531 4.4.2;8.2 Optimizing for Output;536 4.4.2.1;8.2.1 Optimizing for Melt Conveying;536 4.4.2.2;8.2.2 Optimizing for Plasticating;547 4.4.2.2.1;8.2.2.1 Effect of Helix Angle;549 4.4.2.2.1.1;8.2.2.2 Effect of Multiple Flights;549 4.4.2.2.1.2;8.2.2.3 Effect of Flight Clearance;551 4.4.2.2.
1.3;8.2.2.4 Effect of Compression Ratio;553 4.4.2.3;8.2.3 Optimizing for Solids Conveying;554 4.4.2.3.1;8.2.3.1 Effect of Channel Depth;554 4.4.2.3.1.1;8.2.3.2 Effect of Helix Angle;555 4.4.2.3.1.2;8.2.3.3 Effect of Number of Flights;556 4.4.2.3.1.3;8.2.3.4 Effect of Flight Clearance;556 4.4.2.3.1.4;8.2.3.5 Effect of Flight Geometry;556 4.4.3;8.3 Optimizing for Power Consumption;557 4.4.3.1;8.3.1 Optimum Helix Angle;558 4.4.3.2;8.3.2 Effect of Flight Clearance;560 4.4.3.3;8.3.3 Effect of Flight Width;561 4.4.4;8.4 Single-Flighted Extruder Screws;565 4.4.4.1;8.4.1 The Standard Extruder Screw;566 4.4.4.2;8.4.2 Modifications of the Standard Extruder Screw;567 4.4.5;8.5 Devolatilizing Extruder Screws;570 4.4.5.1;8.5.1 Functional Design Considerations;571 4.4.5.2;8.5.2 Various Vented Extruder Screw Designs;575 4.4.5.2.1;8.5.2.1 Conventional Vented Extruder Screw;575 4.4.5.2.1.1;8.5.2.2 Bypass Vented Extruder Screw;576 4.4.5.2.1.2;8.5.2.3 Rearward Devolatilization;577 4.4.5.2.1.3;8.5.2.4 Multi-Vent Devolatilization;578 4.4.5.2.1.4;8.5.2.5 Cascade Devolatilization;579 4.4.5.2.1.5;8.5.2.6 Venting through the Screw;580 4.4.5.2.1.6;8.5.2.7 Venting through a Flighted Barrel;581 4.4.5.3;8.5.3 Vent Port Configuration;582 4.4.6;8.6 Multi-Flighted Extruder Screws;585 4.4.6.1;8.6.1 The Conventional Multi-Flighted Extruder Screw;585 4.4.6.2;8.6.2 Barrier Flight Extruder Screws;586 4.4.6.2.1;8.6.2.1 The Maillefer Screw;589 4.4.6.2.1.1;8.6.2.2 The Barr Screw;592 4.4.6.2.1.2;8.6.2.3 The Dray and Lawrence Screw;595 4.4.6.2.1.3;8.6.2.4 The Kim Screw;596 4.4.6.2.1.4;8.6.2.5 The Ingen Housz Screw;597 4.4.6.2.1.5;8.6.2.6 The CRD Barrier Screw;598 4.4.6.2.1.6;8.6.2.7 Summary of Barrier Screws;599 4.4.7;8.7 Mixing Screws;601 4.4.7.1;8.7.1 Dispersive Mixing Elements;601 4.4.7.1.1;8.7.1.1 The CRD Mixer;619 4.4.7.1.1.1;8.7.1.2 Mixers to Break Up the Solid Bed;633 4.4.7.1.1.2;8.7.1.3 Summary of Dispersive Mixers;635 4.4.7.2;8.7.2 Distributive Mixing Elements;636 4.4.7.2.1;8.7.2.1 Ring or Sleeve M
ixers;638 4.4.7.2.1.1;8.7.2.2 Variable Depth Mixers;639 4.4.7.2.1.2;8.7.2.3 Summary of Distributive Mixers;640 4.4.8;8.8 Efficient Extrusion of Medical Devices;641 4.4.8.1;8.8.1 Introduction;641 4.4.8.2;8.8.2 Good Manufacturing Practices in Medical Extrusion;642 4.4.8.3;8.8.3 Automation of the Medical Extrusion Process;642 4.4.8.4;8.8.4 Minimizing Polymer Degradation;643 4.4.8.5;8.8.5 Melt Temperatures Inside the Extruder;643 4.4.8.6;8.8.6 Melt Temperatures and Screw Design;644 4.4.8.7;8.8.7 Molecular Degradation and Screw Design;647 4.4.8.8;8.8.8 Conclusions;651 4.4.9;8.9 Scale-Up;652 4.4.9.1;8.9.1 Common Scale-Up Factors;652 4.4.9.2;8.9.2 Scale-Up for Heat Transfer;655 4.4.9.3;8.9.3 Scale-Up for Mixing;656 4.4.9.4;8.9.4 Comparison of Various Scale-Up Methods;657 4.4.10;8.10 Rebuilding Worn Screws and Barrels;659 4.4.10.1;8.10.1 Application of Hardfacing Materials;661 4.4.10.1.1;8.10.1.1 Oxyacetylene Welding;661 4.4.10.1.1.1;8.10.1.2 Tungsten Inert Gas Welding;662 4.4.10.1.1.2;8.10.1.3 Plasma Transfer Arc Welding;662 4.4.10.1.1.3;8.10.1.4 Metal Inert Gas Welding;663 4.4.10.1.1.4;8.10.1.5 Laser Hardfacing;663 4.4.10.2;8.10.2 Rebuilding of Extruder Barrels;663 4.5;9 Die Design;670 4.5.1;9.1 Basic Considerations;671 4.5.1.1;9.1.1 Balancing the Die by Adjusting the Land Length;672 4.5.1.2;9.1.2 Balancing by Channel Height;676 4.5.1.3;9.1.3 Other Methods of Die Balancing;679 4.5.2;9.2 Film and Sheet Dies;680 4.5.2.1;9.2.1 Flow Adjustment in Sheet and Film Dies;681 4.5.2.2;9.2.2 The Horseshoe Die;684 4.5.3;9.3 Pipe and Tubing Dies;685 4.5.3.1;9.3.1 Tooling Design for Tubing;688 4.5.3.1.1;9.3.1.1 Definitions of Various Draw Ratios;689 4.5.3.1.1.1;9.3.1.2 Land Length;690 4.5.3.1.1.2;9.3.1.3 Taper Angles;691 4.5.3.1.1.3;9.3.1.4 Special Features;693 4.5.4;9.4 Blown Film Dies;693 4.5.4.1;9.4.1 The Spiral Mandrel Geometry;696 4.5.4.2;9.4.2 Effect of Die Geometry on Flow Distribution;697 4.5.4.3;9.4.3 Summary of Spiral Mandrel Die Design Variables;701 4.5.5;9.5 Profile Extrusio
n Dies;701 4.5.6;9.6 Coextrusion;703 4.5.6.1;9.6.1 Interface Distortion;707 4.5.7;9.7 Calibrators;709 4.6;10 Twin Screw Extruders;714 4.6.1;10.1 Introduction;714 4.6.2;10.2 Twin versus Single Screw Extruder;716 4.6.3;10.3 Intermeshing Co-Rotating Extruders;718 4.6.3.1;10.3.1 Closely Intermeshing Extruders;718 4.6.3.2;10.3.2 Self-Wiping Extruders;721 4.6.3.2.1;10.3.2.1 Geometry of Self-Wiping Extruders;722 4.6.3.2.1.1;10.3.2.2 Conveying in Self-Wiping Extruders;730 4.6.4;10.4 Intermeshing Counter-Rotating Extruders;737 4.6.5;10.5 Non-Intermeshing Twin Screw Extruders;747 4.6.6;10.6 Coaxial Twin Screw Extruders;760 4.6.7;10.7 Devolatilization in Twin Screw Extruders;762 4.6.8;10.8 Commercial Twin Screw Extruders;766 4.6.8.1;10.8.1 Screw Design Issues for Co-Rotating Twin Screw Extruders;770 4.6.8.2;10.8.2 Scale-Up in Co-Rotating Twin Screw Extruders;773 4.6.9;10.9 Overview of Twin Screw Extruders;775 4.7;11 Troubleshooting Extruders;780 4.7.1;11.1 Requirements for Efficient Troubleshooting;780 4.7.1.1;11.1.1 Instrumentation;781 4.7.1.2;11.1.2 Understanding of the Extrusion Process;781 4.7.1.3;11.1.3 Collect and Analyze Historical Data (Timeline);782 4.7.1.4;11.1.4 Team Building;783 4.7.1.5;11.1.5 Condition of the Equipment;783 4.7.1.6;11.1.6 Information on the Feedstock;784 4.7.2;11.2 Tools for Troubleshooting;785 4.7.2.1;11.2.1 Temperature Measurement Devices;785 4.7.2.2;11.2.2 Data Acquisition Systems (DAS);786 4.7.2.2.1;11.2.2.1 Portable Data Collectors/Machine Analyzers;786 4.7.2.2.1.1;11.2.2.2 Fixed Station Data Acquisition Systems;787 4.7.2.3;11.2.3 Light Microscopy;789 4.7.2.4;11.2.4 Thermochromic Materials;790 4.7.2.5;11.2.5 Thermal Analysis;792 4.7.2.6;11.2.6 Miscellaneous Tools;792 4.7.3;11.3 Systematic Troubleshooting;793 4.7.3.1;11.3.1 Upsets versus Development Problems;793 4.7.3.2;11.3.2 Machine-Related Problems;793 4.7.3.2.1;11.3.2.1 Drive System;793 4.7.3.2.1.1;11.3.2.2 The Feed System;795 4.7.3.2.1.2;11.3.2.3 Different Feeding Systems;795 4.7.3.2.1.3;1
1.3.2.4 Heating and Cooling System;795 4.7.3.2.1.4;11.3.2.5 Wear Problems;797 4.7.3.2.1.5;11.3.2.6 Screw Binding;814 4.7.3.3;11.3.3 Polymer Degradation;820 4.7.3.3.1;11.3.3.1 Types of Degradation;820 4.7.3.3.1.1;11.3.3.2 Degradation in Extrusion;824 4.7.3.4;11.3.4 Extrusion Instabilities;837 4.7.3.4.1;11.3.4.1 Frequency of Instability;838 4.7.3.4.1.1;11.3.4.2 Functional Instabilities;845 4.7.3.4.1.2;11.3.4.3 Solving Extrusion Instabilities;850 4.7.3.5;11.3.5 Air Entrapment;851 4.7.3.6;11.3.6 Gels, Gel Content, and Gelation;853 4.7.3.6.1;11.3.6.1 Measuring Gels;856 4.7.3.6.1.1;11.3.6.2 Gels Created in the Extrusion Process;857 4.7.3.6.1.2;11.3.6.3 Removing Gels Produced in Polymerization;858 4.7.3.7;11.3.7 Die Flow Problems;860 4.7.3.7.1;11.3.7.1 Melt Fracture;860 4.7.3.7.1.1;11.3.7.2 Die Lip Build-Up (Die Drool);862 4.7.3.7.1.2;11.3.7.3 V- or W-Patterns;863 4.7.3.7.1.3;11.3.7.4 Specks and Discoloration;863 4.7.3.7.1.4;11.3.7.5 Lines in Extruded Product;868 4.7.3.7.1.5;11.3.7.6 Optical Properties;870 4.8;12 Modeling and Simulation of the Extrusion Process;878 4.8.1;12.1 Introduction;878 4.8.2;12.2 Background;879 4.8.2.1;12.2.1 Analytical Techniques;879 4.8.2.2;12.2.2 Numerical Methods;881 4.8.2.2.1;12.2.2.1 Finite Difference Method;882 4.8.2.2.1.1;12.2.2.2 Finite Element Method;883 4.8.2.2.1.2;12.2.2.3 Boundary Element Method;884 4.8.2.3;12.2.3 Remeshing Techniques in Moving Boundary Problems;885 4.8.2.4;12.2.4 Rheology;887 4.8.3;12.3 Simulating 3-D Flows with 2-D Models;888 4.8.3.1;12.3.1 Simulating Flows in Internal Batch Mixers with 2-D Models;888 4.8.3.2;12.3.2 Simulating Flows in Extrusion with 2-D Models;894 4.8.3.3;12.3.3 Simulating Flows in Extrusion Dies with 2-D Models;898 4.8.4;12.4 Three-Dimensional Simulation;902 4.8.4.1;12.4.1 Simulating Flows in the Banbury Mixer with Three-Dimensional Models;902 4.8.4.2;12.4.2 Simulating Flows in Extrusion Dies with 3-Dimensional Models;904 4.8.4.3;12.4.3 Simulating Flows in Extrusion with 3-Dimensional Models;909 4.8
.4.3.1;12.4.3.1 Regular Conveying Screw;909 4.8.4.3.1.1;12.4.3.2 Energy Transfer Mixer;910 4.8.4.3.1.2;12.4.3.3 Twin Screw Extruder;912 4.8.4.3.1.3;12.4.3.4 Rhomboidal Mixers and Fluted Mixers (Leroy/Maddock);918 4.8.4.3.1.4;12.4.3.5 Turbo-Screw;923 4.8.4.3.1.5;12.4.3.6 CRD Mixer;925 4.8.4.4;12.4.4 Static Mixers;927 4.8.5;12.5 Conclusions;929 5;Conversion Constants;936 5.1;Length;936 5.2;Volume;936 5.3;Mass;937 5.4;Density;937 5.5;Force;937 5.6;Stress;938 5.7;Viscosity;938 5.8;Energy/.Work;939 5.9;Power;939 5.10;Specific Energy;939 5.11;Thermal Conductivity;940 5.12;Temperature;940 6;Index;942