Bücher versandkostenfrei*100 Tage RückgaberechtAbholung in der Wunschfiliale
NEU: Das Hugendubel Hörbuch Abo - jederzeit, überall, für nur 7,95 € monatlich!
Jetzt entdecken
mehr erfahren
Produktbild: Random Dynamical Systems | Ludwig Arnold
Produktbild: Random Dynamical Systems | Ludwig Arnold

Random Dynamical Systems

(0 Bewertungen)15
1285 Lesepunkte
eBook pdf
128,49 €inkl. Mwst.
Sofort lieferbar (Download)
Empfehlen
This book is the first systematic presentation of the theory of random dynamical systems, i. e. of dynamical systems under the influence of some kind of randomness. The theory comprises products of random mappings as well as random and stochastic differential equations. The author's approach is based on Oseledets'multiplicative ergodic theorem for linear random systems, for which a detailed proof is presented. This theorem provides us with a random substitute of linear algebra and hence can serve as the basis of a local theory of nonlinear random systems. In particular, global and local random invariant manifolds are constructed and their regularity is proved. Techniques for simplifying a system by random continuous or smooth coordinate tranformations are developed (random Hartman-Grobman theorem, random normal forms). Qualitative changes in families of random systems (random bifurcation theory) are also studied. A dynamical approach is proposed which is based on sign changes of Lyapunov exponents and which extends the traditional phenomenological approach based on the Fokker-Planck equation. Numerous instructive examples are treated analytically or numerically. The main intention is, however, to present a reliable and rather complete source of reference which lays the foundations for future works and applications.

Inhaltsverzeichnis

I. Random Dynamical Systems and Their Generators. - 1. Basic Definitions. Invariant Measures. - 2. Generation. - II. Multiplicative Ergodic Theory. - 3. The Multiplicative Ergodic Theorem in Euclidean Space. - 4. The Multiplicative Ergodic Theorem on Bundles and Manifolds. - 5. The MET for Related Linear and Affine RDS. - 6. RDS on Homogeneous Spaces of the General Linear Group. - III. Smooth Random Dynamical Systems. - 7. Invariant Manifolds. - 8. Normal Forms. - 9. Bifurcation Theory. - IV. Appendices. - Appendix A. Measurable Dynamical Systems. - A. 1 Ergodic Theory. - A. 2 Stochastic Processes and Dynamical Systems. - A. 3 Stationary Processes. - A. 4 Markov Processes. - Appendix B. Smooth Dynamical Systems. - B. 1 Two-Parameter Flows on a Manifold. - B. 4 Autonomous Case: Dynamical Systems. - B. 5 Vector Fields and Flows on Manifolds. - References.

Produktdetails

Erscheinungsdatum
17. April 2013
Sprache
englisch
Seitenanzahl
586
Dateigröße
47,80 MB
Reihe
Springer Monographs in Mathematics
Autor/Autorin
Ludwig Arnold
Kopierschutz
mit Wasserzeichen versehen
Produktart
EBOOK
Dateiformat
PDF
ISBN
9783662128787

Pressestimmen

" Ludwig Arnold' s monograph is going to make a very big impact for many years to come. "
DMV Jahresbericht, 103. Band, Heft 2, July 2001

Bewertungen

0 Bewertungen

Es wurden noch keine Bewertungen abgegeben. Schreiben Sie die erste Bewertung zu "Random Dynamical Systems" und helfen Sie damit anderen bei der Kaufentscheidung.