Advanced Materials for Integrated Optical Waveguides

Sprache: Englisch. Dateigröße in MByte: 14.
eBook pdf

Dieses eBook können Sie auf allen Geräten lesen, die pdf-fähig sind. z.B. auf dem tolino oder dem Sony Reader - nicht auf dem Kindle.

This book provides a comprehensive introduction to integrated optical waveguides for information technology and data communications. Integrated coverage ranges from advanced materials, fabrication, and characterization techniques to guidelines for de

weiterlesen
Dieser Artikel ist auch verfügbar als:
eBook pdf

170,99 *

inkl. MwSt.
Sofort lieferbar (Download)
Machen Sie jemandem eine Freude und
verschenken Sie einen Download!
Ganz einfach Downloads verschenken - so funktioniert's:
  1. 1 Geben Sie die Adresse der Person ein, die Sie beschenken
    möchten. Mit einer lieben Grußbotschaft verleihen Sie Ihrem
    Geschenk eine persönliche Note.
  2. 2 Bezahlen Sie das Geschenk bequem per Kreditkarte,
    Überweisung oder Lastschrift.
  3. 3 Der/die Geschenkempfänger/in bekommt von uns Ihre Nachricht
    und eine Anleitung zum Downloaden Ihres Geschenks!
Advanced Materials for Integrated Optical Waveguides als eBook pdf

Produktdetails

Titel: Advanced Materials for Integrated Optical Waveguides
Autor/en: Xingcun Colin Tong

ISBN: 3319015508
EAN: 9783319015507
Format:  PDF
Sprache: Englisch.
Dateigröße in MByte: 14.
Springer-Verlag GmbH

17. Oktober 2013 - pdf eBook

Beschreibung

This book provides a comprehensive introduction to integrated optical waveguides for information technology and data communications. Integrated coverage ranges from advanced materials, fabrication, and characterization techniques to guidelines for design and simulation. A concluding chapter offers perspectives on likely future trends and challenges. The dramatic scaling down of feature sizes has driven exponential improvements in semiconductor productivity and performance in the past several decades. However, with the potential of gigascale integration, size reduction is approaching a physical limitation due to the negative impact on resistance and inductance of metal interconnects with current copper-trace based technology. Integrated optics provides a potentially lower-cost, higher performance alternative to electronics in optical communication systems. Optical interconnects, in which light can be generated, guided, modulated, amplified, and detected, can provide greater bandwidth, lower power consumption, decreased interconnect delays, resistance to electromagnetic interference, and reduced crosstalk when integrated into standard electronic circuits. Integrated waveguide optics represents a truly multidisciplinary field of science and engineering, with continued growth requiring new developments in modeling, further advances in materials science, and innovations in integration platforms. In addition, the processing and fabrication of these new devices must be optimized in conjunction with the development of accurate and precise characterization and testing methods. Students and professionals in materials science and engineering will find Advanced Materials for Integrated Optical Waveguides to be an invaluable reference for meeting these research and development goals.

Inhaltsverzeichnis

PrefaceAbbreviations
1 Fundamentals and design guides for optical waveguidesAbstract1.1 State of the art and challenges1.1.1 Rationale and challenges of optical interconnects to electronic circuits1.1.2 Evolution of optical interconnects 1.1.2.1 Fiber-based optical interconnects1.1.2.2 Optical interconnects overlaid on PCB1.1.2.3 Inter-chip interconnects with board-embedded waveguides1.1.2.4 Free-space optoelectronic interconnects 1.1.2.5 Optical interconnects to electronic chips1.1.3 Waveguide components and integration technologies1.1.3.1 Light sources1.1.3.2 Characteristics of VCSELs1.1.3.3 Photodetectors1.1.3.4 Electronics1.1.3.5 Optical waveguides for short-range optical interconnects1.1.3.6 Micro-optical coupling elements1.1.3.7 Integration and packaging1.2 Fundamental theory and design methodology1.2.1 Classification of optical waveguides1.2.2 Fundament waveguide theory1.2.3 Optical waveguide design methodology            1.3 Waveguide materials selection and fabrication techniques1.4 Environmental compliance of optical waveguide materials1.5 SummaryReference
2 Characterization methodologies of optical waveguidesAbstract2.1 Geometrical inspection2.2 Reflective index measurements2.2.1 Reflectometry and ellipsometry2.2.2 Surface plasmon resonance2.2.3 Prism coupling2.2.4 Propagation-mode near-field technique2.2.5 Refracted near-field technique2.2.6 M-line spectroscopy2.3 Coupling techniques2.3.1 Prism coupling method2.3.2 End-coupling method2.3.3 Lunch and tapered-coupling method2.3.4 Grating coupling method2.4 Optical loss2.4.1 Propagation losses by radiation2.4.2 Propagation losses by absorption and mode conversion2.4.3 Propagation losses by diffusion2.4.4 Measurement of propagation losses2.5 Optoelectronic characterization2.5.1 Optical power meters 2.5.2 Optical time-domain reflectometers2.5.3 Spectrum analyzers2.5.4 Eye diagrams2.6 Electro-optic effects2.7 Thermo-optic effects2.8 Acousto-optic effects2.9 Non-linear optic effects2.9.1 Self-phase modulation2.9.2 Cross-phase modulation2.9.3 Four-wave mixing2.9.4 Stimulated Raman Scattering2.9.5 Stimulated brillouin scattering2.10 Reliability evaluation2.10.1 Failure modes and mechanisms2.10.2 Reliability qualificationsReference
3 Optoelectronic devices integrated with optical waveguides      Abstract3.1 Optoelectronic theory and demonstration3.2 Light emission devices3.2.1 Light emitting diodes 3.2.2 Lasers 3.3 Optical modulators and drives3.4 Optical detectors3.4.1 Photoconductors3.4.2 Photodiodes3.4.3 Photodetectors3.4.3.1 Hetero-interface photodetectors3.4.3.2 Travelling-wave photodetectors3.4.3.3 Resonant-cavity photodetectors3.4.3.4 Phototransistors3.5 Optical receivers3.5.1 Transimpedance amplifiers3.5.2 Clocked sense amplifier and the receiver of minimal change3.6 Optical pathways3.6.1 Free-space approaches3.6.2 Guided wave approaches3.6.2.1 POF ribbons3.6.2.2 Imaging fiber bundles3.6.2.3 On-chip rigid waveguides3.6.3 Reconfigurable optical pathways3.6.4 Guided wave versus free space optics         3.7 Optoelectronic device hybridization and integration3.7.1 Bonding techniques3.7.2 Monolithic integration3.7.3 Silicon based light emission3.7.4 Multifunctional device        3.8 Nanomaterials for optoelectronic devicesReference
 4 Optical fibersAbstract4.1 Historical perspective 4.2 Fiber optical principles4.2.1 Fiber modes4.2.2 Dispersive properties4.2.3 Type of optical fibers4.3 Fiber materials4.3.1 Glasses4.3.2 Plastic optical fibers4.3.3 Photonic crystal fibers4.3.4 Nano-fibers4.4 Fiber fabrication4.4.1 Purifying silica4.4.2 Drawing the fiber4.4.3 Vapor deposition techniques4.4.4 Joining fibers4.5 Optical fiber cables4.5.1 Cabling environments4.5.2 Fiber coating4.5.3 Basic cable construction4.5.4 Indoor cables4.5.5 Air blown fiber4.5.6 Outdoor cables4.5.7 Undersea cables4.6 SummaryReference
5 Semiconductor waveguidesAbstract5.1 Fundamental theory5.1.1 Crystal structure5.1.2 Energy band structure5.1.3 III-V compound semiconductors5.1.4 Quantum structure5.1.5 Superlattice heterostructure           5.2 Semiconductor materials and fabrication process for waveguides5.2.1 Silicon waveguides5.2.2 Gallium arsenide waveguides          5.2.3 InAs quantum dots                               5.3 Quantum-well technology5.3.1 Characterization of quantum well5.3.2 Quantum well intermixing5.3.3 Micromachining     5.4 Doped semiconductor waveguides5.5 Semiconductor nanomaterials for waveguides5.6 SummaryReference 
6 Silicon-on-insulator waveguidesAbstract6.1 Silicon photonics       6.2 Silicon-on-insulator materials6.2.1 Silicon-on-silica6.2.2 Silicon-on-sapphire6.2.3 Silicon-on-nitride6.2.4 Other perspective materials6.3 Silicon-on-insulator technology6.3.1 Ion implantation and damage recovery6.3.2 Dopant diffusion in bulk silicon6.4 Silicon-on-insulator waveguide structures6.4.1 Large single mode waveguides6.4.2 Strip nano-waveguides6.5 Fabrication techniques of SOI waveguides6.5.1 Wafer fabrication6.5.2 Waveguide fabrication                        6.6 Thallium-doped SOI rib waveguides6.7 Indium-doped SOI rib waveguides6.8 SOI waveguide applications6.8.1 Type of SOI waveguides6.8.2 Low-loss SOI waveguides6.8.3 Linear applications6.8.4 Nonlinear applications6.9 SummaryReference 
7 Glass waveguidesAbstract7.1 Glass structure and composition7.2 Silica glass waveguides7.2.1 Material processing technology7.2.2 Refractive index profiling of planar waveguides7.2.3 Silica waveguide devices7.3 Silicon oxynitride waveguides7.3.1 Material processing technology7.3.2 SiON waveguide design and fabrication7.3.3 SiON waveguide devices7.4 Ion-exchanged glass waveguides7.4.1 The ion-exchange techniques7.4.2 Optical property of ion-exchanged waveguides7.4.3 Ion-exchange systems in glass waveguides7.4.4 Applications of ion-exchanged glass waveguides7.5 Sol-gel glass waveguides7.6 Laser-written waveguides7.7 Glass waveguide lasers7.8 SummaryReference
8 Electro-optic waveguidesAbstract8.1 Physical effects in electro-optic waveguides8.2 Electro-optic materials and modulators8.2.1 Electro-optic materials in photonics8.2.2 Electro-optic modulation in waveguides8.2.3 Alternative electro-optic materials8.3 Lithium niobate waveguides8.3.1 Lithium niobate crystal8.3.2 fabrication process of lithium niobate waveguides8.3.3 Erbium-doped lithium niobate waveguides8.4 Lithium tantalite waveguides8.5 Barium titanate waveguides8.6 Electro-optic polymer materials and formed waveguides8.6.1 Electro-optic polymer materials                      8.6.2 Electro-optic polymer waveguides8.7 Liquid crystal electro-optic waveguides8.8 Strained silicon as an electro-optic material8.9 SummaryReference 
9 Polymer based optical waveguidesAbstract9.1 Rationale of polymers used for optical waveguides9.2 Polymeric waveguide materials9.2.1 Current perspectives9.2.2 Materials characterization and performance requirement9.2.3 Conventional optical polymers9.2.4 Advanced optical polymers9.3 Fabrication process of polymer waveguides9.3.1 Photoresist-based patterning9.3.2 Direct lithographic patterning9.3.3 Soft lithography9.3.4 Electron beam bombardment9.3.5 Injection molding9.3.6 UV writing9.3.7 Dispensed polymer waveguides9.3.8 Doping of polymers to create waveguide devices9.4 Polymer based optical components and integrated optics9.4.1 Switches9.4.2 Variable optical attenuators and tunable filters9.4.3 Polarization controllers and modulators9.4.4 Lasers and amplifiers9.4.5 Detectors9.4.6 Optical interconnects for computing systems9.4.7 Planar optical connects for wavelength division multiplexing telecommunication systems9.4.8 Planar optical waveguides for sensors9.4.9 Integrated planar lightwave circuits9.5 SummaryReference 
10 Hollow waveguidesAbstract10.1 State of art and perspectives 10.2 Hollow waveguide design and materials selection10.2.1 Design principle10.2.2 Materials selection and structure design10.3 OmniGuide hollow Bragg fibers10.4 Metal/dielectric coated hollow waveguides10.5 Hollow glass waveguides10.6 Chalcogenide glass hollow Bragg fibers10.6.1 Germanium selenide glass10.6.2 High refractive index chalcogenide glasses10.6.3 Silver-Arsenic-Selenide glasses10.6.4 Chalcogenide glass HBF preform fabrication and drawing10.7 Liquid core waveguides10.8 Applications of hollow waveguides10.8.1 Hollow waveguides for optical PCB technology10.8.2 Hollow waveguides for medical applications10.8.3 Prospective telecommunication applications10.8.4 Hollow waveguides as gas cells10.8.5 Applications of hollow waveguides for remote sensing10.8.6 Industrial Applications10.9 SummaryReference 
11 Metamaterial optical waveguidesAbstract11.1 Historical perspective11.2 Fabrication techniques of optical metamaterials11.2.1 2D metamaterial structures11.2.2 3D metamaterials11.2.3 Thin metal film deposition for fabrication of metamaterials 11.3 Metamaterial waveguiding principle11.4 Modes of metamaterial waveguide structures11.5 Metamaterial modulators11.5.1 Free-space fishnet metamaterial modulator11.5.2 Integrated fishnet metamaterial modulator11.6 Superlens11.6.1 Superlensing in the near field11.6.2 Superlenses projecting far-field images11.6.3 Hyperlens as an optical turbine11.7 Metamaterial sensors11.7.1 Biosensors11.7.2 Thin-film sensors11.7.3 Wireless strain sensors11.8 Future prospects|11.9 SummaryReference 
12 Perspectives and future trendsAbstract12.1 Optical waveguide devices and materials12.1.1 Terahertz band12.1.2 Near-infrared range12.1.3 Visible and ultraviolet ranges12.1.4 Optical interconnects12.2 Advances of micro-optics and nanophotonics12.2.1 Silicon photonics12.2.2 Nanoplasmonics12.2.3 Photonic crystals and metamaterials for micro-optics and nanophotonics12.2.4 Terahertz radiation and its applications12.2.5 Nanophotonics and quantum information processing12.3 Trends in applications12.3.1 Optical communication networks12.3.2 Optical memory and information processing12.3.3 Displays12.3.4 Laser processing and optical measurement12.3.5 Medical technology in the optical industry12.4 SummaryReferences Index

Technik

Dieses eBook wird im PDF-Format geliefert und ist mit einem Wasserzeichen versehen. Sie können dieses eBook auf vielen gängigen Endgeräten lesen.

Sie können dieses eBook auf vielen gängigen Endgeräten lesen.

Für welche Geräte?
Sie können das eBook auf allen Lesegeräten, in Apps und in Lesesoftware öffnen, die PDF unterstützen:

  • tolino Reader
    Öffnen Sie das eBook nach der automatischen Synchronisation auf dem Reader oder übertragen Sie es manuell auf Ihr tolino Gerät mit der kostenlosen Software Adobe Digital Editions.

  • Andere eBook Reader
    Laden Sie das eBook direkt auf dem Reader im Hugendubel.de-Shop herunter oder übertragen Sie es mit der kostenlosen Software Sony READER FOR PC/Mac oder Adobe Digital Editions.

  • Für Tablets und Smartphones: Unsere Gratis tolino Lese-App
         

  • PC und Mac
    Lesen Sie das eBook direkt nach dem Herunterladen Herunterladen über "Jetzt lesen" im Browser oder mit der kostenlosen Lesesoftware Adobe Digital Editions.

Die eBook-Datei wird beim Herunterladen mit einem nicht löschbaren Wasserzeichen individuell markiert, sodass die Ermittlung und rechtliche Verfolgung des ursprünglichen Käufers im Fall einer missbräuchlichen Nutzung der eBook-Datei möglich ist.

Bitte beachten Sie: Dieses eBook ist nicht auf Kindle-Geräten lesbar.

Ihr erstes eBook?
Hier erhalten Sie alle Informationen rund um die digitalen Bücher für Neueinsteiger.

Mehr aus dieser Reihe

zurück
Applications of Emerging Memory Technology
eBook pdf
Microwave Electronics
eBook pdf
von Andrey D. Grigor…
Field Emission Electronics
eBook pdf
von Nikolay Egorov, …
Solid-State-Drives (SSDs) Modeling
eBook pdf
3D Microelectronic Packaging
eBook pdf
vor
Servicehotline
089 - 70 80 99 47

Mo. - Fr. 8.00 - 20.00 Uhr
Sa. 10.00 - 20.00 Uhr
Filialhotline
089 - 30 75 75 75

Mo. - Sa. 9.00 - 20.00 Uhr
Sicher & bequem bezahlen:
Bleiben Sie in Kontakt:
Hugendubel App
Zustellung durch:
1 Mängelexemplare sind Bücher mit leichten Beschädigungen, die das Lesen aber nicht einschränken. Mängelexemplare sind durch einen Stempel als solche gekennzeichnet. Die frühere Buchpreisbindung ist aufgehoben. Angaben zu Preissenkungen beziehen sich auf den gebundenen Preis eines mangelfreien Exemplars.

2 Diese Artikel unterliegen nicht der Preisbindung, die Preisbindung dieser Artikel wurde aufgehoben oder der Preis wurde vom Verlag gesenkt. Die jeweils zutreffende Alternative wird Ihnen auf der Artikelseite dargestellt. Angaben zu Preissenkungen beziehen sich auf den vorherigen Preis.

4 Der gebundene Preis dieses Artikels wird nach Ablauf des auf der Artikelseite dargestellten Datums vom Verlag angehoben.

5 Der Preisvergleich bezieht sich auf die unverbindliche Preisempfehlung (UVP) des Herstellers.

6 Der gebundene Preis dieses Artikels wurde vom Verlag gesenkt. Angaben zu Preissenkungen beziehen sich auf den vorherigen Preis.

7 Die Preisbindung dieses Artikels wurde aufgehoben. Angaben zu Preissenkungen beziehen sich auf den vorherigen Preis.

10 Ihr Gutschein TONIE10 gilt bis einschließlich 30.11.2020. Sie können den Gutschein ausschließlich online einlösen unter www.hugendubel.de. Keine Bestellung zur Abholung in der Buchhandlung möglich. Der Gutschein gilt nur auf Tonie-Figuren, Tonie-Transporter, Wandregale und Lauscher und nur solange der Vorrat reicht. Der Gutschein ist nicht mit anderen Gutscheinen und Geschenkkarten kombinierbar. Eine Barauszahlung ist nicht möglich. Ein Weiterverkauf und der Handel des Gutscheincodes sind nicht gestattet.

11 Bestellungen ins Ausland und der DHL-Paketversand sind von der kostenfreien Lieferung ausgeschlossen.

* Alle Preise verstehen sich inkl. der gesetzlichen MwSt. Informationen über den Versand und anfallende Versandkosten finden Sie hier.

*** Gilt für Bestellungen auf Hugendubel.de. Von dem verlängerten Rückgaberecht ausgeschlossen sind eBooks, Hörbuch Downloads, tolino select, das Leseglück-Abo, die eKidz.eu Apps sowie phase6 Apps. Das gesetzliche Widerrufsrecht bleibt hiervon unberührt.