Warenkorb
€ 0,00 0 Buch dabei,
portofrei
Statistical Analysis of Geographic Information with ArcView GIS and Arcgis als Buch
PORTO-
FREI

Statistical Analysis of Geographic Information with ArcView GIS and Arcgis

52:B&W 6. 14 x 9. 21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Sprache: Englisch.
Buch (gebunden)
Statistical Analysis and Modeling of Geographic Information with ArcView GIS is an update to Lee and Wong's Statistical Analysis with ArcView GIS, featuring expanded coverage of classical statistical methods, probability and statistical testing, new … weiterlesen
Buch

136,49*

inkl. MwSt.
Portofrei
Sofort lieferbar
Statistical Analysis of Geographic Information with ArcView GIS and Arcgis als Buch

Produktdetails

Titel: Statistical Analysis of Geographic Information with ArcView GIS and Arcgis
Autor/en: Jay Lee, David W. S. Wong

ISBN: 0471468991
EAN: 9780471468998
52:B&W 6. 14 x 9. 21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam.
Sprache: Englisch.
John Wiley & Sons

6. Oktober 2005 - gebunden - 464 Seiten

Beschreibung

Statistical Analysis and Modeling of Geographic Information with ArcView GIS is an update to Lee and Wong's Statistical Analysis with ArcView GIS, featuring expanded coverage of classical statistical methods, probability and statistical testing, new student exercises to facilitate classroom use, new exercises featuring interactive ArcView Avenue scripts, and a new overview of compatible spatial analytical functions in ArcGIS 9.0.

Inhaltsverzeichnis

Preface.
Introduction.
1. 1 Why Statistics and Sampling?
1.2 What is so Special about Spatial Data?
1.3 Spatial Data and the Needs For Spatial Analysis/Statistics.
1.4 Fundamentals in Spatial Analysis and Statistics.
1.5 ArcView Notes - Data Model and Examples.
1.6 References Cited.
1.7 Exercises. PART I. CLASSICAL STATISTICS.
Distribution Descriptors: One Variable (Univariate).
2.1 Measures of Central Tendency.
2.2 Measures of Dispersion.
2.3 ArcView Examples.
2.4 Higher Moments Statistics.
2.5 ArcView Examples.
2.6 Application Example.
2.7 Summary.
2.8 References Cited.
2.9 Exercises.
Relationship Descriptors: Two Variables (Bivariate).
3.1 Correlation Analysis.
3.2 Correlation: Nominal Scale.
3.3 Correlation: Ordinal Scale.
3.4 Correlation: Interval / Ratio Scale.
3.5 Trend Analysis.
3.6 ArcView Notes.
3.7 Application Examples.
3.8 Reference Cited.
3.9 Exercises.
Hypothesis Testers.
4.1 Probability Concepts.
4.2 Probability Functions.
4.3 Central Limit Theorem and Confidence Intervals.
4.4 Hypothesis Testing.
4.5 Parametric Test Statistics.
4.6 Difference in Means.
4.7 Difference between a mean and a fixed value.
4.8 Significance of Pearson's correlation coefficient.
4.9 Significance of Regression Parameters.
4.10 Testing Non-Parametric Statistics: Chi-Square Statistics, Chi².
4.11 Spearman's Rank Coefficient.
4.12 Kolmogorov-Smirnov Test.
4.13 Summary.
4.14 Reference used in this chapter.
4.15 Exercises. PART II. SPATIAL STATISTICS.
Point Pattern Descriptors.
5.1 The Nature of Point Features.
5.2 Central Tendency of Point Distributions.
5.3 Dispersion and Orientation of Point Distributions.
5.4 ArcView Notes.
5.5 Application Examples.
5.6 References Cited.
5.7 Exercises.
Point Pattern Analyzers.
Scale and Extent.
Quadrat Analysis.
6.3 Ordered Neighbor Analysis.
6.4 K-Function.
6.5 Spatial Autocorrelation of Points.
6.6 Application Examples.
6.7 References Cited.
6.8 Exercises.
Line Pattern Analyzers.
7.1 The Nature of Linear Features: Vectors and Networks.
7.2 Characteristics and Attributes of Linear Features.
7.3. Directional Statistics.
7.4 Network Analysis.
7.5 Application Examples.
7.6 References Cited.
7.7 Exercises.
Polygon Pattern Analyzers.
8.1 Introduction.
8.2 Spatial Relationships.
8.3 Spatial Dependency.
8.4 Spatial Weights Matrices.
8.5 Spatial Autocorrelation Statistics and Notations.
8.6 Joint Count Statistics.
(** modify the sections in the original manuscript **).
8.7 Global Statistics.
8.8 Local Spatial Autocorrelation Statistics.
8.9 Moran Scatterplot.
8.10 ArcView Example 8.4: Local Spatial Autocorrelation Statistics and Moran Scatterplot.
8.11 Bivariate Spatial Autocorrelation.
8.12 Application Examples.
8.13 Summary.
8.14 References Cited.
8.15 Exercises.

Portrait

David W. S. Wong, PhD, is Professor and Chair of the Earth Systems and GeoInformation Sciences Program at George Mason University in Fairfax, Virginia. Jay Lee, PhD, is Professor and Chair of the Department of Geography at Kent State University in Kent, Ohio.

Servicehotline
089 - 70 80 99 47

Mo. - Fr. 8.00 - 20.00 Uhr
Sa. 10.00 - 20.00 Uhr
Filialhotline
089 - 30 75 75 75

Mo. - Sa. 9.00 - 20.00 Uhr
Bleiben Sie in Kontakt:
Sicher & bequem bezahlen:
akzeptierte Zahlungsarten: Überweisung, offene Rechnung,
Visa, Master Card, American Express, Paypal
Zustellung durch:
* Alle Preise verstehen sich inkl. der gesetzlichen MwSt. Informationen über den Versand und anfallende Versandkosten finden Sie hier.
** Deutschsprachige eBooks und Bücher dürfen aufgrund der in Deutschland geltenden Buchpreisbindung und/oder Vorgaben von Verlagen nicht rabattiert werden. Soweit von uns deutschsprachige eBooks und Bücher günstiger angezeigt werden, wurde bei diesen kürzlich von den Verlagen der Preis gesenkt oder die Buchpreisbindung wurde für diese Titel inzwischen aufgehoben. Angaben zu Preisnachlässen beziehen sich auf den dargestellten Vergleichspreis.