Bücher versandkostenfrei*100 Tage RückgaberechtAbholung in der Wunschfiliale
NEU: Das Hugendubel Hörbuch Abo - jederzeit, überall, für nur 7,95 € monatlich!
Jetzt entdecken
mehr erfahren
Produktbild: Mathematical Pictures at a Data Science Exhibition | Simon Foucart
Weitere Ansicht: Mathematical Pictures at a Data Science Exhibition | Simon Foucart
Produktbild: Mathematical Pictures at a Data Science Exhibition | Simon Foucart

Mathematical Pictures at a Data Science Exhibition

(0 Bewertungen)15
1105 Lesepunkte
Buch (gebunden)
110,49 €inkl. Mwst.
Zustellung: Mi, 10.09. - Sa, 13.09.
Versand in 7 Tagen
Versandkostenfrei
Empfehlen
This text provides deep and comprehensive coverage of the mathematical background for data science, including machine learning, optimal recovery, compressed sensing, optimization, and neural networks. In the past few decades, heuristic methods adopted by big tech companies have complemented existing scientific disciplines to form the new field of Data Science. This text embarks the readers on an engaging itinerary through the theory supporting the field. Altogether, twenty-seven lecture-length chapters with exercises provide all the details necessary for a solid understanding of key topics in data science. While the book covers standard material on machine learning and optimization, it also includes distinctive presentations of topics such as reproducing kernel Hilbert spaces, spectral clustering, optimal recovery, compressed sensing, group testing, and applications of semidefinite programming. Students and data scientists with less mathematical background will appreciate the appendices that provide more background on some of the more abstract concepts.

Inhaltsverzeichnis

Part I. Machine Learning: 1. Rudiments of Statistical Learning; 2. Vapnik-Chervonenkis Dimension; 3. Learnability for Binary Classification; 4. Support Vector Machines; 5. Reproducing Kernel Hilbert; 6. Regression and Regularization; 7. Clustering; 8. Dimension Reduction; Part II Optimal Recovery: 9. Foundational Results of Optimal Recovery; 10. Approximability Models; 11. Ideal Selection of Observation Schemes; 12. Curse of Dimensionality; 13. Quasi-Monte Carlo Integration; Part III Compressive Sensing: 14. Sparse Recovery from Linear Observations; 15. The Complexity of Sparse Recovery; 16. Low-Rank Recovery from Linear Observations; 17. Sparse Recovery from One-Bit Observations; 18. Group Testing; Part IV Optimization: 19. Basic Convex Optimization; 20. Snippets of Linear Programming; 21. Duality Theory and Practice; 22. Semidefinite Programming in Action; 23. Instances of Nonconvex Optimization; Part V Neural Networks: 24. First Encounter with ReLU Networks; 25. Expressiveness of Shallow Networks; 26. Various Advantages of Depth; 27. Tidbits on Neural Network Training; Appendix A; High-Dimensional Geometry; Appendix B. Probability Theory; Appendix C. Functional Analysis; Appendix D. Matrix Analysis; Appendix E. Approximation Theory.

Produktdetails

Erscheinungsdatum
29. März 2022
Sprache
englisch
Untertitel
Sprache: Englisch.
Seitenanzahl
340
Autor/Autorin
Simon Foucart
Produktart
gebunden
Gewicht
644 g
Größe (L/B/H)
235/157/23 mm
ISBN
9781316518885

Portrait

Simon Foucart

Simon Foucart is Professor of Mathematics at Texas A&M University, where he was named Presidential Impact Fellow in 2019. He has previously written, together with Holger Rauhut, the influential book A Mathematical Introduction to Compressive Sensing (2013).

Bewertungen

0 Bewertungen

Es wurden noch keine Bewertungen abgegeben. Schreiben Sie die erste Bewertung zu "Mathematical Pictures at a Data Science Exhibition" und helfen Sie damit anderen bei der Kaufentscheidung.

Simon Foucart: Mathematical Pictures at a Data Science Exhibition bei hugendubel.de. Online bestellen oder in der Filiale abholen.