This book introduces the formal foundations and practical applications of Bayesian networks.
Inhaltsverzeichnis
1. Introduction; 2. Propositional logic; 3. Probability calculus; 4. Bayesian networks; 5. Building Bayesian networks; 6. Inference by variable elimination; 7. Inference by factor elimination; 8. Inference by conditioning; 9. Models for graph decomposition; 10. Most likely instantiations; 11. The complexity of probabilistic inference; 12. Compiling Bayesian networks; 13. Inference with local structure; 14. Approximate inference by belief propagation; 15. Approximate inference by stochastic sampling; 16. Sensitivity analysis; 17. Learning: the maximum likelihood approach; 18. Learning: the Bayesian approach; Appendix A: notation; Appendix B: concepts from information theory; Appendix C: fixed point iterative methods; Appendix D: constrained optimization.