"The second of two volumes builds on the foundational material on ergodic theory and geometric measure theory provided in Volume I, and applies all the techniques discussed to describe the beautiful and rich dynamics of elliptic functions. The text begins with an introduction to topological dynamics of transcendental meromorphic functions, before progressing to elliptic functions, discussing at length their classical properties, measurable dynamics and fractal geometry. The authors then look in depth at compactly non-recurrent elliptic functions. Much of this material is appearing for the first time in book or paper form. Both senior and junior researchers working in ergodic theory and dynamical systems will appreciate what is sure to be an indispensable reference"--
Inhaltsverzeichnis
Volume I. Preface; Acknowledgments; Introduction; Part I. Ergodic Theory and Geometric Measures: 1. Geometric measure theory; 2. Invariant measures: finite and infinite; 3. Probability (finite) invariant measures: basic properties and existence; 4. Probability (finite) invariant measures: finer properties; 5. Infinite invariant measures: finer properties; 6. Measure- theoretic entropy; 7. Thermodynamic formalism; Part II. Complex Analysis, Conformal Measures, and Graph Directed Markov Systems: 8. Selected topics from complex analysis; 9. Invariant measures for holomorphic maps f in A(X) or in Aw(X); 10. Sullivan conformal measures for holomorphic maps f in A(X) and in Aw(X); 11. Graph directed Markov systems; 12. Nice sets for analytic maps; References; Index of symbols; Subject index; Volume II. Preface; Acknowledgments; Introduction; Part III. Topological Dynamics of Meromorphic Functions: 13. Fundamental properties of meromorphic dynamical systems; 14. Finer properties of fatou components; 15. Rationally indifferent periodic points; Part IV. Elliptic Functions: Classics, Geometry, and Dynamics: 16. Classics of elliptic functions: selected properties; 17. Geometry and dynamics of (all) elliptic functions.