Pseudodifferential operators and characteristic classes for non-abelian cohomology.- Euclidean Yang-Mills flows in the orbit space.- Congruence, contact et rep s de Frenet.- Killing vector fields and complex structures.- Derivations in the tangent bundle.- Some examples of deformations of transversely holomorphic foliations.- Sur certaines expressions globales d une forme de contact.- Connexions singulieres et classe de Maslov.- Sur la cohomologie des syst s d ations diff ntielles et des pseudogroupes de lie.- Energies et geometrie integrale.- Geometry and cohomologies associated with a contact manifold.- A note on semisimple flat homogeneous spaces.- Some results on diff?(R n).- Some integral invariants of plane fields on riemannian manifolds.- A Schur-like Lemma for the NK-manifolds of constant type.- Compact Hausdorff foliations.- Nijenhuis tensor field and weakly Kahler manifolds.- Generic embeddings, Gauss maps and stratipications.- Spectral geometry of submanifolds in the complex projective space.- Self-dual and anti-self-dual homogeneous structures.
Inhaltsverzeichnis
Pseudodifferential operators and characteristic classes for non-abelian cohomology. - Euclidean Yang-Mills flows in the orbit space. - Congruence, contact et repères de Frenet. - Killing vector fields and complex structures. - Derivations in the tangent bundle. - Some examples of deformations of transversely holomorphic foliations. - Sur certaines expressions globales d une forme de contact. - Connexions singulieres et classe de Maslov. - Sur la cohomologie des systèmes d équations différentielles et des pseudogroupes de lie. - Energies et geometrie integrale. - Geometry and cohomologies associated with a contact manifold. - A note on semisimple flat homogeneous spaces. - Some results on diff? (R n). - Some integral invariants of plane fields on riemannian manifolds. - A Schur-like Lemma for the NK-manifolds of constant type. - Compact Hausdorff foliations. - Nijenhuis tensor field and weakly Kahler manifolds. - Generic embeddings, Gauss maps and stratipications. - Spectral geometry of submanifolds in the complex projective space. - Self-dual and anti-self-dual homogeneous structures.