Combustion Engineering, a topic generally taught at the upper undergraduate and graduate level in most mechanical engineering programs, and many chemical engineering programs, is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications - from the generation of power such as the internal combustion automobile engine to the gas turbine engine. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions have kept the interest in this vital area of engineering high and brought about new developments in both fundamental knowledge of flame and combustion physics as well as new technologies for flame and fuel control.
- New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion - all interrelated and discussed by considering scaling issues (e. g. , length and time scales)
- New information on sensitivity analysis of reaction mechanisms and generation and application of reduced mechanisms
- Expanded coverage of turbulent reactive flows to better illustrate real-world applications
- Important new sections on stabilization of diffusion flames. For the first time, the concept of triple flames will be introduced and discussed in the context of diffusion flame stabilization
Inhaltsverzeichnis
1;Front Cover;1 2;Combustion;4 3;Copyright Page;5 4;Contents;10 5;Prologue;18 6;Preface;20 7;CHAPTER 1. CHEMICAL THERMODYNAMICS AND FLAME TEMPERATURES;22 7.1;A. Introduction;22 7.2;B. Heats of reaction and formation;22 7.3;C. Free energy and the equilibrium constants;29 7.4;D. Flame temperature calculations;37 7.4.1;1. Analysis;37 7.4.2;2. Practical considerations;43 7.5;E. Sub- and super sonic combustion thermodynamics;53 7.5.1;1. Comparisons;53 7.5.2;2. Stagnation pressure considerations;54 7.6;Problems;57 8;CHAPTER 2. CHEMICAL KINETICS;64 8.1;A. Introduction;64 8.2;B. Rates of reactions and their temperature dependence;64 8.2.1;1. The Arrhenius rate expression;66 8.2.2;2. Transition state and recombination rate theories;68 8.3;C. Simultaneous interdependent reactions;73 8.4;D. Chain reactions;74 8.5;E. Pseudo-first-order reactions and the "fall-off" range;78 8.6;F. The partial equilibrium assumption;81 8.7;G. Pressure effect in fractional conversion;82 8.8;H. Chemical kinetics of large reaction mechanisms;83 8.8.1;1. Sensitivity analysis;84 8.8.2;2. Rate of production analysis;86 8.8.3;3. Coupled thermal and chemical reacting systems;87 8.8.4;4. Mechanism simplification;89 8.9;Problems;90 9;CHAPTER 3. EXPLOSIVE AND GENERAL OXIDATIVE CHARACTERISTICS OF FUELS;96 9.1;A. Introduction;96 9.2;B. Chain branching reactions and criteria for explosion;96 9.3;C. Explosion limits and oxidation characteristics of hydrogen;104 9.4;D. Explosion limits and oxidation characteristics of carbon monoxide;112 9.5;E. Explosion limits and oxidation characteristics of hydrocarbons;119 9.5.1;1. Organic nomenclature;120 9.5.2;2. Explosion limits;124 9.5.3;3. "Low-temperature" hydrocarbon oxidation mechanisms;127 9.6;F. The oxidation of aldehydes;131 9.7;G. The oxidation of methane;133 9.7.1;1. Low-temperature mechanism;133 9.7.2;2. High-temperature mechanism;134 9.8;H. The oxidation of higher-order hydrocarbons;138 9.8.1;1. Aliphatic hydrocarbons;138 9.8.2;2. Alcohols;148 9.8.3;3. Aromati
c hydrocarbons;150 9.8.4;4. Supercritical effects;160 9.9;Problems;162 10;CHAPTER 4. FLAME PHENOMENA IN PREMIXED COMBUSTIBLE GASES;168 10.1;A. Introduction;168 10.2;B. Laminar flame structure;172 10.3;C. The laminar flame speed;174 10.3.1;1. The theory of Mallard and Le Chatelier;177 10.3.2;2. The theory of Zeldovich, Frank-Kamenetskii, and Semenov;182 10.3.3;3. Comprehensive theory and laminar flame structure analysis;189 10.3.4;4. The laminar flame and the energy equation;197 10.3.5;5. Flame speed measurements;197 10.3.6;6. Experimental results: physical and chemical effects;206 10.4;D. Stability limits of laminar flames;212 10.4.1;1. Flammability limits;213 10.4.2;2. Quenching distance;221 10.4.3;3. Flame stabilization (low velocity);222 10.4.4;4. Stability limits and design;228 10.5;E. Flame propagation through stratified combustible mixtures;232 10.6;F. Turbulent reacting flows and turbulent flames;234 10.6.1;1. The rate of reaction in a turbulent field;237 10.6.2;2. Regimes of turbulent reacting flows;239 10.6.3;3. The turbulent flame speed;252 10.7;G. Stirred reactor theory;256 10.8;H. Flame stabilization in high-velocity streams;261 10.9;I. Combustion in small volumes;271 10.10;Problems;275 11;CHAPTER 5. DETONATION;282 11.1;A. Introduction;282 11.1.1;1. Premixed and diffusion flames;282 11.1.2;2. Explosion, deflagration, and detonation;282 11.1.3;3. The onset of detonation;283 11.2;B. Detonation phenomena;285 11.3;C. Hugoniot relations and the hydrodynamic theory of detonations;286 11.3.1;1. Characterization of the Hugoniot curve and the uniqueness of the CJ point;287 11.3.2;2. Determination of the speed of sound in the burned gases for conditions above the CJ point;297 11.3.3;3. Calculation of the detonation velocity;303 11.4;D. Comparison of detonation velocity calculations with experimental results;307 11.5;E. The ZND structure of detonation waves;314 11.6;F. The structure of the cellular detonation front and other detonation phenomena parameters;318 11.6
.1;1. The cellular detonation front;318 11.6.2;2. The dynamic detonation parameters;322 11.6.3;3. Detonation limits;323 11.7;G. Detonations in nongaseous media;327 11.8;Problems;328 12;CHAPTER 6. DIFFUSION FLAMES;332 12.1;A. Introduction;332 12.2;B. Gaseous fuel jets;332 12.2.1;1. Appearance;333 12.2.2;2. Structure;337 12.2.3;3. Theoretical considerations;339 12.2.4;4. The BurkeSchumann development;343 12.2.5;5. Turbulent fuel jets;350 12.3;C. Burning of condensed phases;352 12.3.1;1. General mass burning considerations and the evaporation coefficient;353 12.3.2;2. Single fuel droplets in quiescent atmospheres;358 12.4;D. Burning of droplet clouds;385 12.5;E. Burning in convective atmospheres;386 12.5.1;1. The stagnant film case;386 12.5.2;2. The longitudinally burning surface;388 12.5.3;3. The flowing droplet case;390 12.5.4;4. Burning rates of plastics: The small B assumption and radiation effects;393 12.6;Problems;395 13;CHAPTER 7. IGNITION;400 13.1;A. Concepts;400 13.2;B. Chain spontaneous ignition;403 13.3;C. Thermal spontaneous ignition;405 13.3.1;1. Semenov approach of thermal ignition;405 13.3.2;2. Frank-Kamenetskii theory of thermal ignition;410 13.4;D. Forced ignition;416 13.4.1;1. Spark ignition and minimum ignition energy;417 13.4.2;2. Ignition by adiabatic compression and shock waves;422 13.5;E. Other ignition concepts;423 13.5.1;1. Hypergolicity and pyrophoricity;424 13.5.2;2. Catalytic ignition;427 13.6;Problems;428 14;CHAPTER 8. ENVIRONMENTAL COMBUSTION CONSIDERATIONS;430 14.1;A. Introduction;430 14.2;B. The nature of photochemical smog;431 14.2.1;1. Primary and secondary pollutants;432 14.2.2;2. The effect of NO[sub(x)];432 14.2.3;3. The effect of SO[sub(x)];436 14.3;C. Formation and reduction of nitrogen oxides;438 14.3.1;1. The structure of the nitrogen oxides;439 14.3.2;2. The effect of flame structure;440 14.3.3;3. Reaction mechanisms of oxides of nitrogen;441 14.3.4;4. The reduction of NO[sub(x)];457 14.4;D. SO[sub(x)] emissions;462 14.4.1;1. T
he product composition and structure of sulfur compounds;463 14.4.2;2. Oxidative mechanisms of sulfur fuels;465 14.5;E. Particulate formation;478 14.5.1;1. Characteristics of soot;479 14.5.2;2. Soot formation processes;480 14.5.3;3. Experimental systems and soot formation;481 14.5.4;4. Sooting tendencies;483 14.5.5;5. Detailed structure of sooting flames;495 14.5.6;6. Chemical mechanisms of soot formation;499 14.5.7;7. The influence of physical and chemical parameters on soot formation;503 14.6;F. Stratospheric ozone;506 14.6.1;1. The HO[sub(x)] catalytic cycle;507 14.6.2;2. The NO[sub(x)] catalytic cycle;508 14.6.3;3. The ClO[sub(x)] catalytic cycle;510 14.7;Problems;512 15;CHAPTER 9. COMBUSTION OF NONVOLATILE FUELS;516 15.1;A. Carbon char, soot, and metal combustion;516 15.2;B. Metal combustion thermodynamics;517 15.2.1;1. The criterion for vapor-phase combustion;517 15.2.2;2. Thermodynamics of metaloxygen systems;517 15.2.3;3. Thermodynamics of metalair systems;530 15.2.4;4. Combustion synthesis;534 15.3;C. Diffusional kinetics;541 15.4;D. Diffusion-controlled burning rate;543 15.4.1;1. Burning of metals in nearly pure oxygen;545 15.4.2;2. Burning of small particles diffusion versus kinetic limits;548 15.4.3;3. The burning of boron particles;551 15.4.4;4. Carbon particle combustion (C. R. Shaddix);552 15.5;E. Practical carbonaceous fuels (C. R. Shaddix);555 15.5.1;1. Devolatilization;555 15.5.2;2. Char combustion;560 15.5.3;3. Pulverized coal char oxidation;561 15.5.4;4. Gasification and oxy-combustion;563 15.6;F. Soot oxidation (C. R. Shaddix);566 15.7;Problems;569 16;APPENDIXES;572 16.1;APPENDIX A. THERMOCHEMICAL DATA AND CONVERSION FACTORS;576 16.1.1;Table A1. Conversion factors and physical constants;577 16.1.2;Table A2. Thermochemical data for selected chemical compounds;578 16.1.3;Table A3. Thermochemical data for species included in reaction list of Appendix C;667 16.2;APPENDIX B. ADIABATIC FLAME TEMPERATURES OF HYDROCARBONS;674 16.2.1;Table B1. Adiabatic
flame temperatures;674 16.3;APPENDIX C. SPECIFIC REACTION RATE CONSTANTS;680 16.3.1;Table C1. H[sub(2)]/O[sub(2)] mechanism;680 16.3.2;Table C2. CO/H[sub(2)]/O[sub(2)] mechanism;682 16.3.3;Table C3. CH[sub(2)]O/CO/H[sub(2)]/O[sub(2)] mechanism;683 16.3.4;Table C4. CH[sub(3)]OH/CH[sub(2)]O/CO/H[sub(2)]/O[sub(2)] mechanism;684 16.3.5;Table C5. CH[sub(4)]/CH[sub(3)]OH/CH[sub(2)]O/CO/H[sub(2)]/O[sub(2)] mechanism;686 16.3.6;Table C6. C[sub(2)]H[sub(6)]/CH[sub(4)]/CH[sub(3)]OH/CH[sub(2)]O/CO/H[sub(2)]/O[sub(2)] mechanism;689 16.3.7;Table C7. Selected reactions of a C[sub(3)]H[sub(8)] oxidation mechanism;694 16.3.8;Table C8. N[sub(x)]O[sub(y)]/CO/H[sub(2)]/O[sub(2)] mechanism;698 16.3.9;Table C9. HCl/N[sub(x)]O[sub(y)]/CO/H[sub(2)]/O[sub(2)] mechanism;704 16.3.10;Table C10. O[sub(3)]/N[sub(x)]O[sub(y)]/CO/H[sub(2)]/O[sub(2)] mechanism;705 16.3.11;Table C11. SO[sub(x)]/N[sub(x)]O[sub(y)]/CO/H[sub(2)]/O[sub(2)] mechanism;706 16.4;APPENDIX D. BOND DISSOCIATION ENERGIES OF HYDROCARBONS;714 16.4.1;Table D1. Bond dissociation energies of alkanes;715 16.4.2;Table D2. Bond dissociation energies of alkenes, alkynes, and aromatics;716 16.4.3;Table D3. Bond dissociation energies of C/H/O compounds;719 16.4.4;Table D4. Bond dissociation energies of sulfur-containing compounds;720 16.4.5;Table D5. Bond dissociation energies of nitrogen-containing compounds;721 16.4.6;Table D6. Bond dissociation energies of halocarbons;723 16.5;APPENDIX E. FLAMMABILITY LIMITS IN AIR;724 16.5.1;Table E1. Flammability limits of fuel gases and vapors in air at 25C and 1 atm;725 16.6;APPENDIX F. LAMINAR FLAME SPEEDS;734 16.6.1;Table F1. Burning velocities of various fuels at 25C air-fuel temperature (0.31 mol% H[sub(2)]O in air). Burning velocity S as a function of equivalence ratio ø in cm/s;735 16.6.2;Table F2. Burning velocities of various fuels at 100C air-fuel temperature (0.31 mol% H[sub(2)]O in air). Burning velocity S as a function of equivalence ratio ø in cm/s;740 16.6.3;Table F3. Burning velocit
ies of various fuels in air as a function of pressure for an equivalence ratio of 1 in cm/s;741 16.7;APPENDIX G. SPONTANEOUS IGNITION TEMPERATURE DATA;742 16.7.1;Table G1. Spontaneous ignition temperature data;743 16.8;APPENDIX H. MINIMUM SPARK IGNITION ENERGIES AND QUENCHING DISTANCES;764 16.8.1;Table H1. Minimum spark ignition energy data for fuels in air at 1 atm pressure;765 16.9;APPENDIX I. PROGRAMS FOR COMBUSTION KINETICS;768 16.9.1;A. Thermochemical parameters;768 16.9.2;B. Kinetic parameters;768 16.9.3;C. Transport parameters;769 16.9.4;D. Reaction mechanisms;769 16.9.5;E. Thermodynamic equilibrium;771 16.9.6;F. Temporal kinetics (Static and flow reactors);773 16.9.7;G. Stirred reactors;774 16.9.8;H. Shock tubes;775 16.9.9;I. Premixed flames;775 16.9.10;J. Diffusion flames;777 16.9.11;K. Boundary layer flow;777 16.9.12;L. Detonations;777 16.9.13;M. Model analysis and mechanism reduction;777 17;Author Index;780 17.1;A;780 17.2;B;780 17.3;C;781 17.4;D;781 17.5;E;782 17.6;F;782 17.7;G;782 17.8;H;783 17.9;I;783 17.10;J;783 17.11;K;784 17.12;L;784 17.13;M;785 17.14;N;785 17.15;O;786 17.16;P;786 17.17;Q;786 17.18;R;786 17.19;S;786 17.20;T;787 17.21;U;787 17.22;V;787 17.23;W;788 17.24;X;788 17.25;Y;788 17.26;Z;788 18;Subject Index;790 18.1;A;790 18.2;B;790 18.3;C;790 18.4;D;791 18.5;E;791 18.6;F;791 18.7;G;792 18.8;H;792 18.9;I;792 18.10;K;792 18.11;L;792 18.12;M;792 18.13;N;793 18.14;O;793 18.15;P;793 18.16;Q;793 18.17;R;793 18.18;S;793 18.19;T;794 18.20;U;794 18.21;V;794 18.22;W;794