Bücher versandkostenfrei*100 Tage RückgaberechtAbholung in der Wunschfiliale
Nur heute: Ihr 15% Rabatt10 auf viele Sortimente mit dem Code 100TAGE
Nur heute: Ihr 15% Rabatt10 auf Spielwaren, Kalender, English Books & mehr mit dem Code 100TAGE
Jetzt einlösen
mehr erfahren
product
cover

Machine Learning with PySpark

With Natural Language Processing and Recommender Systems

630 Lesepunkte
eBook pdf
eBook pdf
Sparen Sie jetzt zusätzlich 15%10 auf diesen Artikel mit dem Gutscheincode: 100TAGE
62,99 €inkl. Mwst.
Sofort lieferbar (Download)
Empfehlen

Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems.

Machine Learning with PySpark, Second Edition begins with the fundamentals of Apache Spark, including the latest updates to the framework. Next, you will learn the full spectrum of traditional machine learning algorithm implementations, along with natural language processing and recommender systems. You'll gain familiarity with the critical process of selecting machine learning algorithms, data ingestion, and data processing to solve business problems. You'll see a demonstration of how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forests. You'll also learn how to automate the steps using Spark pipelines, followed by unsupervised models such as K-means and hierarchical clustering. A section on Natural Language Processing (NLP) covers text processing, text mining, and embeddings for classification. This new edition also introduces Koalas in Spark and how to automate data workflow using Airflow and PySpark's latest ML library.

After completing this book, you will understand how to use PySpark's machine learning library to build and train various machine learning models, along with related components such as data ingestion, processing and visualization to develop data-driven intelligent applications

You will:

  • Build a spectrum of supervised and unsupervised machine learning algorithms
  • Use PySpark's machine learning library to implement machine learning and recommender systems
  • Leverage the new features in PySpark's machine learning library
  • Understand data processing using Koalas in Spark
  • Handle issues around feature engineering, class balance, bias and variance, and cross validation to build optimally fit models

Inhaltsverzeichnis

Chapter 1: Introduction to Spark 3.1.- Chapter 2: Manage Data with PySpark.- Chapter 3: Introduction to Machine Learning.- Chapter 4: Linear Regression with PySpark.- Chapter 5: Logistic Regression with PySpark.- Chapter 6: Ensembling with PySpark.- Chapter 7: Clustering with PySpark.- Chapter 8: Recommendation Engine with PySpark.- Chapter 9: Advanced Feature Engineering with PySpark.



Produktdetails

Erscheinungsdatum
08. Dezember 2021
Sprache
englisch
Auflage
2nd ed.
Seitenanzahl
220
Dateigröße
9,09 MB
Autor/Autorin
Pramod Singh
Verlag/Hersteller
Kopierschutz
mit Wasserzeichen versehen
Produktart
EBOOK
Dateiformat
PDF
ISBN
9781484277775

Portrait

Pramod Singh

Pramod Singh works at Bain & Company in the Advanced Analytics Group. He has extensive hands-on experience in large scale machine learning, deep learning, data engineering, designing algorithms and application development. He has spent more than 13 years working in the field of Data and AI at different organizations. He's published four books - Deploy Machine Learning Models to Production, Machine Learning with PySpark, Learn PySpark and Learn TensorFlow 2.0, all for Apress. He is also a regular speaker at major conferences such as O'Reilly's Strata and AI conferences. Pramod holds a BTech in electrical engineering from B.A.T.U, and an MBA from Symbiosis University. He has also earned a Data Science certification from IIM-Calcutta. He lives in Gurgaon with his wife and 5-year-old son. In his spare time, he enjoys playing guitar, coding, reading, and watching football.

Bewertungen

0 Bewertungen

Es wurden noch keine Bewertungen abgegeben. Schreiben Sie die erste Bewertung zu "Machine Learning with PySpark" und helfen Sie damit anderen bei der Kaufentscheidung.