The purpose of applying mathematical theory to the theory of statistical inference is to make it simpler and more elegant. Theory of Statistical Inference is concerned with the development of a type of optimization theory which can be used to inform the choice of statistical methodology.
Theory of Statistical Inference is designed as a reference on statistical inference for researchers and students at the graduate or advanced undergraduate level. It presents a unified treatment of the foundational ideas of modern statistical inference, and would be suitable for a core course in a graduate program in statistics or biostatistics. The emphasis is on the application of mathematical theory to the problem of inference, leading to an optimization theory allowing the choice of those statistical methods yielding the most efficient use of data. The book shows how a small number of key concepts, such as sufficiency, invariance, stochastic ordering, decision theory and vector space algebra play a recurring and unifying role.
The volume can be divided into four sections. Part I provides a review of the required distribution theory. Part II introduces the problem of statistical inference. This includes the definitions of the exponential family, invariant and Bayesian models. Basic concepts of estimation, confidence intervals and hypothesis testing are introduced here. Part III constitutes the core of the volume, presenting a formal theory of statistical inference. Beginning with decision theory, this section then covers uniformly minimum variance unbiased (UMVU) estimation, minimum risk equivariant (MRE) estimation and the Neyman-Pearson test. Finally, Part IV introduces large sample theory. This section begins with stochastic limit theorems, the d-method, the Bahadur representation theorem for sample quantiles, large sample U-estimation, the Cramér-Rao lower bound and asymptotic efficiency. A separate chapter is then devoted to estimating equation methods. The volume ends with a detailed development of large sample hypothesis testing, based on the likelihood ratio test (LRT), Rao score test and the Wald test.
Features
Inhaltsverzeichnis
"The large variety of topics covered in the current version allows students at all level, be it bachelor, master or Ph. D. to find topics suitable for their own study. On one hand, the book contains fairly advanced topics to help researchers in their own research areas, and on the other hand, it provides enough materials for lecturers to prepare lecture notes and design an entire course on theoretical statistics. Overall, I am extremely excited about Theory of Statistical Inference and eagerly waiting for numerous students, researchers, lecturers and even working professionals to enjoy the immense benefit coming out of its publication."
Somabha Mukherjee, National University of Singapore, Singapore, Journal of the American Statistical Association, February 2024.
Es wurden noch keine Bewertungen abgegeben. Schreiben Sie die erste Bewertung zu "Theory of Statistical Inference" und helfen Sie damit anderen bei der Kaufentscheidung.