Data Science: An Introduction focuses on using the R programming language in Jupyter notebooks to perform basic data manipulation and cleaning, create effective visualizations, and extract insights from data using supervised predictive models.
Inhaltsverzeichnis
1. R and the tidyverse, 2. Reading in data locally and from the web, 3. Cleaning and wrangling data, 4. Effective data visualization, 5. Classification I: training & predicting, 6. Classification II: evaluation & tuning, 7. Regression I: K-nearest neighbors, 8. Regression II: linear regression, 9. Clustering, 10. Statistical inference, 11. Combining code and text with Jupyter, 12. Collaboration with version control, 13. Setting up your computer