Warenkorb
€ 0,00 0 Buch dabei,
portofrei
Optimierungsmethoden als Buch
PORTO-
FREI

Optimierungsmethoden

Einführung in die Unternehmensforschung für Wirtschaftswissenschaftler. 'Physica-Lehrbuch'. 3. , vollständig…
Buch (kartoniert)
Das Lehrbuch ist aus Lehrveranstaltungen des Verfassers für das Grund- und Hauptstudium für Wirtschaftswissenschaftler an der Universität Bielefeld hervorgegangen. Es wendet sich in erster Linie an Studenten der Betriebs- und Volkswirtschaftslehre. E … weiterlesen
Buch

32,99*

inkl. MwSt.
Portofrei
Sofort lieferbar
Optimierungsmethoden als Buch

Produktdetails

Titel: Optimierungsmethoden
Autor/en: Klaus-Peter Kistner

ISBN: 3790800430
EAN: 9783790800432
Einführung in die Unternehmensforschung für Wirtschaftswissenschaftler.
'Physica-Lehrbuch'.
3. , vollständig überarbeitete und erweiterte Aufl. 2003.
Book.
Physica-Verlag HD

14. April 2003 - kartoniert - 304 Seiten

Beschreibung

Das Lehrbuch ist aus Lehrveranstaltungen des Verfassers für das Grund- und Hauptstudium für Wirtschaftswissenschaftler an der Universität Bielefeld hervorgegangen. Es wendet sich in erster Linie an Studenten der Betriebs- und Volkswirtschaftslehre. Es soll dieser Zielgruppe Möglichkeiten zur Formulierung von Modellen zur Maximierung bzw. Minimierung gegebener Zielfunktionen unter Berücksichtigung von Beschränkungen und Nicht-Negativitätsbedingungen sowie die Verfahren zur Lösung dieser Probleme vorstellen. Um Verständnis für diese Fragestellungen zu vermitteln, begnügt sich das Lehrbuch nicht mit einer bloßen Darstellung der Rechenverfahren, es will diese auch begründen. Es werden deshalb auch die theoretischen Grundlagen dieser Verfahren und die dahinterstehenden Optimalitätsbedingungen hergeleitet und von der reinen Optimierungstechnik unabhängige theoretische Aspekte dargestellt.
Entsprechend den zu erwartenden Fähigkeiten der angesprochenen Zielgruppe werden nur diejenigen mathematischen Grundlagen aus der klassischen Analysis und der linearen Algebra vorausgesetzt, die üblicherweise in den Lehrveranstaltungen zur Einführung in die Mathematik für Wirtschaftswissenschaftler vermittelt werden. Das Lehrbuch umfaßt sowohl die Grundlagen der Unternehmensforschung, die üblicherweise im Grundstudium vermittelt werden, als auch deren Weiterentwicklung, die dem Hauptstudium vorbehalten sind. In der Neuauflage wurde die Grundkonzeption des Buches beibehalten, jedoch einige Fehler und Unklarheiten beseitigt.

Inhaltsverzeichnis

1 Einleitung.- 1.1 Entscheidungsmodelle.- 1.2 Typen von Optimierungsmodellen.- 1.2.1 Stetige Optimierungsmodelle.- 1.2.2 Diskrete Optimierungsmodelle.- 1.2.3 Dynamische Optimierungsmodelle.- 1.3 Ausgewählte Lehrbücher.- 2 Grundlagen der linearen Programmierung.- 2.1 Formulierung des Problems.- 2.2 Das Simplex-Verfahren.- 2.2.1 Graphische Veranschaulichung.- 2.2.2 Das Simplex-Verfahren bei einem speziellen Maximum-Problem.- 2.2.3 Bestimmung einer zulässigen Ausgangslösung.- 2.2.4 Sonderfälle beim Simplex-Verfahren.- 2.3 Die Theorie des Simplex-Verfahrens.- 2.3.1 Das Eckentheorem.- 2.3.2 Das Simplex-Kriterium.- 2.3.3 Formaler Aufbau des Simplex-Tableaus.- 2.4 Dualitätstheorie.- 2.4.1 Dualität im speziellen Maximum-Problem.- 2.4.1.1 Formulierung des Problems.- 2.4.1.2 Dualitätssätze.- 2.4.1.3 Complementary Slackness und Preistheorem.- 2.4.2 Dualität im allgemeinen Fall.- 2.4.3 Beispiel.- 2.4.4 Die duale Simplex-Methode.- 3 Erweiterungen der linearen Programmierung.- 3.1 Postoptimale Analysen.- 3.1.1 Sensitivitätsanalyse.- 3.1.1.1 Veränderung der Beschränkungskonstanten.- 3.1.1.2 Veränderung der Zielfunktionskoeffizienten.- 3.1.1.3 Koeffizienten der Beschränkungsmatrix.- 3.1.2 Zusätzliche Variablen und Restriktionen.- 3.1.2.1 Zusätzliche Variablen.- 3.1.2.2 Zusätzliche Restriktionen.- 3.1.3 Parametrische Programmierung.- 3.1.3.1 Problemstellung.- 3.1.3.2 Allgemeine Eigenschaften.- 3.1.3.3 Ermittlung der kritischen Punkte bei Variation des Beschränkungsvektors.- 3.2 Das Dekompositionsprinzip.- 3.2.1 Problemstellung.- 3.2.2 Der Dekompositions-Algorithmus.- 3.2.3 Theorie des Dekompositions-Algorithmus.- 3.3 Modifikationen des Simplex-Verfahrens.- 3.3.1 Die revidierte Simplex-Methode.- 3.3.2 Beschränkte Variablen.- 3.3.3 Pivotwahl.- 3.4 Polynomiale Algorithmen und Innere-Punkt-Methoden.- 3.4.1 Komplexität der linearen Programmierung.- 3.4.2 Eine primale Innere-Punkt-Methode.- 4 Konvexe Programmierung.- 4.1 Einleitung.- 4.1.1 Konvexe Programme.- 4.1.2 Eigenschaften konvexer Programme.- 4.2 Die Kuhn-Tucker-Bedingungen.- 4.2.1 Problemstellung.- 4.2.2 Die Sattelpunkt-Bedingung.- 4.2.3 Lokale Kuhn-Tucker-Bedingungen.- 4.2.4 Modifikationen und Verallgemeinerungen.- 4.3 Quadratische Programmierung.- 4.3.1 Problemstellung.- 4.3.2 Das Verfahren von Wolfe.- 4.3.2.1 Das Vorgehen.- 4.3.2.2 Die Konvergenz des Verfahrens.- 4.3.2.3 Die modifizierte Form.- 4.4 Schnittebenen-Verfahren der konvexen Programmierung.- 4.4.1 Das Prinzip der Schnittebenen-Verfahren.- 4.4.2 Der Kelley-Algorithmus.- 4.4.3 Die Konvergenz des Kelley-Algorithmus.- 4.5 Separierbare Programme.- 4.5.1 Konvexe separierbare Programme.- 4.5.2 Nicht-konvexe separierbare Programme.- 5 Ganzzahlige Programmierung.- 5.1 Einleitung.- 5.1.1 Ganzzahlige Programme.- 5.1.2 Beispiele für die Anwendung ganzzahliger Programme.- 5.1.2.1 Das Fixkosten-Problem.- 5.1.2.2 Reihenfolge-Bedingungen.- 5.2 Lösungsverfahren der ganzzahligen linearen Programmierung.- 5.2.1 Schnittebenen-Verfahren.- 5.2.1.1 Das Fractional-Integer-Verfahren von Gomory.- 5.2.1.2 Die Konvergenz des Algorithmus.- 5.2.1.3 Kritik und Modifikationen der Schnittebenen-Verfahren.- 5.2.2 Kombinatorische Verfahren.- 5.2.2.1 Enumeration.- 5.2.2.2 Der Balas-Algorithmus.- 5.2.2.3 Das Verfahren von Land und Doig.- 5.3 Spezielle Probleme der ganzzahligen Programmierung.- 5.3.1 Das Transportmodell.- 5.3.1.1 Problemstellung.- 5.3.1.2 Lösungsverfahren.- 5.3.1.3 Die Theorie des Transportmodells.- 5.3.1.4 Stepping-Stone-Methode und Simplex-Verfahren.- 5.3.2 Assignment-Probleme.- 5.3.2.1 Das lineare Assignment-Problem.- 5.3.2.2 Das quadratische Assignment-Problem.- 5.3.3 Das Travelling-Salesman-Problem.- 5.3.4 Das Knapsack-Problem.- 5.4 Ergebnisse der Komplexitätstheorie.- 6 Heuristiken.- 6.1 Problemstellung.- 6.2 Deterministische Heuristiken.- 6.3 Zufallsgesteuerte Heuristiken.- 6.3.1 Simulation.- 6.3.2 Naturanaloge Verfahren.- 6.3.2.1 Mutativ-selektive Verfahren.- 6.3.2.2 Genetische Algorithmen.- 7 Dynamische Programmierung.- 7.1 Problemstellung.- 7.2 Optimale Rückkopplungssteuerung.- 7.2.1 Das Lösungskonzept.- 7.2.2 Beispiele.- 7.2.2.1 Optimaler Ersatzzeitpunkt einer Maschine.- 7.2.2.2 Kürzeste Wege durch ein Netzwerk.- 7.3 Die Lösungsstruktur dynamischer Programme.- 7.3.1 Das Optimalitätsprinz:ip.- 7.3.2 Lineare Politiken.- 8 Zusammenfassung.- 9 Literaturverzeichnis.
Servicehotline
089 - 70 80 99 47

Mo. - Fr. 8.00 - 20.00 Uhr
Sa. 10.00 - 20.00 Uhr
Filialhotline
089 - 30 75 75 75

Mo. - Sa. 9.00 - 20.00 Uhr
Bleiben Sie in Kontakt:
Sicher & bequem bezahlen:
akzeptierte Zahlungsarten: Überweisung, offene Rechnung,
Visa, Master Card, American Express, Paypal
Zustellung durch:
* Alle Preise verstehen sich inkl. der gesetzlichen MwSt. Informationen über den Versand und anfallende Versandkosten finden Sie hier.
** Deutschsprachige eBooks und Bücher dürfen aufgrund der in Deutschland geltenden Buchpreisbindung und/oder Vorgaben von Verlagen nicht rabattiert werden. Soweit von uns deutschsprachige eBooks und Bücher günstiger angezeigt werden, wurde bei diesen kürzlich von den Verlagen der Preis gesenkt oder die Buchpreisbindung wurde für diese Titel inzwischen aufgehoben. Angaben zu Preisnachlässen beziehen sich auf den dargestellten Vergleichspreis.