The book focuses on advanced materials for improving membrane performance across water/wastewater treatment, gas separation processes, organic solvent purification, and biomedical. It discusses new materials such as ceramic and ionic liquid membrane development as well as polymeric-based membranes.
Inhaltsverzeichnis
Membranes for Water and Wastewater Applications. Advanced Materials in Polymeric Ultrafiltration Membranes for Antifouling Improvement. Preparation and Surface Modification of Porous Ceramic Membrane for Water Treatment. Recent Progress in Membrane Distillation Using Electrospun Nanofiber. pH/Temperature-Responsive Polymers. The Recent Progress on Development of Advanced Forward Osmosis for Water and Wastewater Treatment. Advancements in Thin Film Composite Membrane Preparation and Modification for NF and RO Applications. Nanostructured RO Membranes for Fouling Control. Membranes for Gas Separation Process. Carbon Membrane for Gas Separation. Zeolite Membrane for Gas Separation. Ceramic Membrane for CO2 Applications. Membrane for Efficient Hydrogen Purification. Metal Organic Framework Membranes for Gas Separation. High Performance CO2 Separation Thin Film Composite Membranes. Membranes for Organic Solvent Applications. Organosilica Membranes for Pervaporation of IPA/Water. Solvent Resistant NF Membranes. Ceramic Membranes for Vacuum Distillation of Water-Organic Solvent Mixtures. Ceramic Membranes for Pervaporation. Membranes for Energy Applications. Progress in the Use of Ionic Liquids as Electrolyte Membranes. Polymer Electrolyte Membranes for High-Temperature Fuel Cells. Ceramic Membrane for Fuel Cell. Highly Proton Conductive Membrane Materials. Anion Exchange Membranes for Electrodialysis through Layer-by-Layer Deposition. Advancement in Microbial Fuel Cell Development for Energy Recovery from Wastewater. Membranes for Biomedical Applications. Hemodialysis. Functional Nanoporous Membranes for Drug Delivery. Thermal Tunable Membranes for Drug Delivery. Anti-Fouling Membranes for Health Applications. Tailoring Nanofiltration Membrane Properties for Highly-Efficient Antibiotics Removal