The Principles of Electronic and Electromechanic Power Conversion

A Systems Approach. Sprache: Englisch.
eBook epub

Dieses eBook können Sie auf allen Geräten lesen, die epub- und DRM-fähig sind, z.B. auf den tolino oder Sony Readern - nicht auf dem Kindle.

A top-down approach that enables readers to master and apply core principles Using an innovative top-down approach, this text makes it possible for readers to master and apply the principles of contemporary power electronics and electromechanic power … weiterlesen
Dieser Artikel ist auch verfügbar als:
eBook epub

80,99 *

inkl. MwSt.
Sofort lieferbar (Download)
Machen Sie jemandem eine Freude und
verschenken Sie einen Download!
Ganz einfach Downloads verschenken - so funktioniert's:
  1. 1 Geben Sie die Adresse der Person ein, die Sie beschenken
    möchten. Mit einer lieben Grußbotschaft verleihen Sie Ihrem
    Geschenk eine persönliche Note.
  2. 2 Bezahlen Sie das Geschenk bequem per Kreditkarte,
    Überweisung oder Lastschrift.
  3. 3 Der/die Geschenkempfänger/in bekommt von uns Ihre Nachricht
    und eine Anleitung zum Downloaden Ihres Geschenks!
The Principles of Electronic and Electromechanic Power Conversion als eBook epub

Produktdetails

Titel: The Principles of Electronic and Electromechanic Power Conversion
Autor/en: Braham Ferreira, Wim van der Merwe

EAN: 9781118798850
Format:  EPUB
A Systems Approach.
Sprache: Englisch.
John Wiley & Sons

24. Dezember 2013 - epub eBook - 328 Seiten

Beschreibung

A top-down approach that enables readers to master and apply core principles Using an innovative top-down approach, this text makes it possible for readers to master and apply the principles of contemporary power electronics and electromechanic power conversion, exploring both systems and individual components. First, the text introduces the role and system context of power conversion functions. Then the authors examine the building blocks of power conversion systems, describing how the components exchange power. Lastly, readers learn the principles of static and electromechanic power conversion. The Principles of Electronic and Electromechanic Power Conversion opens with a chapter that introduces core concepts in electrical systems and power conversion, followed by a chapter dedicated to electrical power sources and energy storage. Next, the book covers: Power, reactive power, and power factor Magnetically coupled networks Dynamics of rotational systems Power electronic converters DC machines AC machines The text offers readers a concise treatise on the basic concepts of magnetic circuits. Its simple approach to machines makes the principles of field-oriented control and space vector theory highly accessible. In order to help readers fully grasp power electronics, the authors focus on topologies that use a series transistor and diode combination connected to a DC source, a standard building block of today s power conversion systems. Problem sets at the end of each chapter enable readers to fully master each topic as they progress through the text. In summary, The Principles of Electronic and Electromechanic Power Conversion provides the most up-to-date, relevant tools needed by today s power engineers, making it an ideal undergraduate textbook as well as a self-study guide for practicing engineers.

Portrait

BRAHAM FERREIRA, PhD, is Professor in the Department ofElectrical Sustainable Energy at Delft University of Technology,The Netherlands.

WIM van der MERWE, PhD, is with ABB Corporate Research inBaden, Switzerland.

Leseprobe

Chapter 1


Introduction to Electrical Systems and Power Conversion


1.1 Electricity as an Energy Carrier


All through human existence, some of the greatest advancements in the standard of living came about by learning how to convert energy from one form to another. The first controlled and intentional fire (converting chemical energy to heat energy) was the first step in this process. Man employed the energy from biomass for heating and cooking by burning dried leaves, wood and animal waste. The chemical energy trapped in the organic material was released and converted into heat and light energy.

Later, humans discovered that wind could be used for transportation on water. By using sails, the energy present in moving air can be used to propel a ship in water. Wind energy is a form of kinetic energy that is used to overcome the resistance of water and make the ship move.

The generation of mechanical energy to replace human or animal power came later in human history with the development of simple devices to harness the energy of flowing water and wind. The earliest machines built were waterwheels used initially for grinding grain but later adopted for various other functions such as for driving saw mills and pumps. The oldest reference to a water mill dates to about 85 BC, appearing in a poem by an early Greek writer. The source of energy harnessed here is the potential energy of water, which flows from high areas along rivers to the sea.

Windmills, like waterwheels, were among the original machines that replaced animal muscle as a source of power. They were used for centuries in various parts of the world, converting the energy of the wind into mechanical energy for grinding grain, pumping water and draining lowland areas.

The rapid growth of industry from the mid-18th century created a need for new sources of motive power, particularly solutions that are independent of geographic location and
weather conditions. This situation, together with certain other factors, set the stage for the development and widespread use of the steam engine, the first practical device for converting thermal energy into mechanical energy. In 1765, James Watt, a Scottish instrument maker and inventor, made important modifications to the steam engine which resulted in a fuel cost reduction of about 75%. This was the first modern breakthrough in improving the efficiency of a machine that converts energy. The unit for electrical power, the rate of energy flow or energy conversion, was named after JamesWatt.

Electrical energy conversion emerged during the 19th century when the English physicist and chemist Michael Faraday discovered a means by which to convert mechanical energy into electricity. This set the scene for the use of electricity to provide light. Lighting was an important driver for the large scale use of electrical energy because incandescent lamps were much easier and safer to use than oil lamps.

The conversion of mechanical energy into electrical energy can also be reversed; the same generator can be operated as an electrical motor, which converts electrical energy into mechanical energy. The advantage of electrical motors in factories was soon realised. Instead of using a complex system of belts and pulleys to distribute power to the various work stations in the factory, copper cables and electrical motors could be used. In this way, the first small electrical grid came into being with a steam engine driving a generator that supplied the electrical energy for lamps and electrical motors.

An advantage of electrical energy is that it can be easily controlled, by using, for example, switches. An oil lamp can be ignited with a match, while it is much simpler to push the button of a switch to turn on a light. Today, you do not even have to get out of the chair to turn on the light or television; you can use a remote control that is carried in your po
cket.

An alternative source of electrical energy is batteries in which chemical energy is directly converted to electrical current. Electrical automobiles using batteries succeeded steam-powered self-propelled vehicles but were later displaced by combustion engine-powered automobiles because the energy density of gasoline is much higher than that of a battery.

Electrical energy can, in general, be converted into other forms of energy with very high efficiency. It is also possible to convert many other forms of energy into electrical energy. The introduction of electrical machines set the first step towards making electrical energy the best universal energy carrier. Semiconductor-based energy converters made it possible to accurately control the flow of electrical energy. The era of electronics began in the 1950s with rapid advances in the design and construction of semiconductor diodes and transistors. When thyristors appeared a few years later in 1957, it became possible to convert energy using electronic circuits.

Figure 1.1 illustrates the interaction between different forms of energy. All energy comes from nuclear reaction, taking place either in the sun or on the earth. Energy from water, wind and solar radiation is called renewable because it cannot be depleted. Fossil fuels, on the other hand, while a cheap and easily available source of energy, can only be consumed once and, as a result, these sources of energy are being depleted.

Figure 1.1 The interaction between different forms of energy.

Most energy is first converted into mechanical energy as an intermediate step before it is converted into electrical energy. By using power electronics, electrical energy is converted into heat, light, mechanical energy and chemical energy for homes, offices and factories. Note that all of these energy flows can be bidirectional, with the exception of heating.

One of the major problems wit
h electrical energy is the willing buyer/willing seller principle. It is impossible to generate electrical energy if there is no consumer of that form of energy. Electrical energy can only be used as a carrier to transport energy from one place (of generation) to another (of consumption). Although it is possible, as we will discuss later in this book, to store limited amounts of electrical energy, we can only generate electrical energy if we have a consumer, even if the storage device is the consumer for that period in time. One of the big challenges to be solved in future energy systems is the fact that the electrical grid will be supplied by a growing amount of renewable energy, which fluctuates between day and night and when wind conditions vary. This will imply that energy may not be available when it is needed by the consumer or the energy could be in abundance it is not needed. Large energy storage systems can solve this problem but it is easier said than done. This puzzle will need to be solved with the Smart Grid in the future.

1.2 Development of Electrical Energy Conversion Systems


The process of energy conversion needs to be controlled. The early humans quickly learned how much wood was required to prepare food for an evening meal. Then they had to feed fuel to the fire at a specific rate to ensure that the flame was large enough, but not too big, to cook food or to roast meat. The same process of controlling the application of energy was used when coal was shovelled into the furnace chamber built into the boiler of a steam locomotive, see Fig. 1.2. Generating the right amount of steam for propulsion and controlling the pressure in the boiler was complicated, and driving a steam engine requires years of practice and apprenticeship training.

Figure 1.2 A steam locomotive.

In a steam locomotive, a complicated system of regulators and throttle valves is employed to control the steam pressure
and the flow of energy to the pistons that are directly mounted on the driving wheels of the locomotive. The steam engine was improved by feeding the steam back through boiler tubes to superheat (to heat something to beyond its boiling point) the steam to increase the engine efficiency and power. The modification of the steam engine set the trend to apply advanced technology to improve the efficiency of energy conversion systems. As a result, modern energy conversion systems are complex and have many conversion stages.

Continuing with the example of the train locomotive, we observe in Fig. 1.3 how the distance between the furnace or chamber where the combustion takes place and mechanical energy conversion has increased. In a diesel-electrical locomotive, the combustion takes place in a diesel engine that is connected to an electrical generator. The energy required by the train is then supplied, in electrical form, to an electronic power converter that controls both the speed and traction power delivered to the wheels by controlling the flow of electrical energy delivered to the electrical motors. This power electronic converter fulfils the same function as that of the gears and throttle in an automobile. In the final stage of the conversion chain, the electrical energy is converted to mechanical energy by an electrical motor that is directly connected to the axle.

Figure 1.3 A diesel-electrical locomotive.

In the case of an electrical locomotive, Fig. 1.4, the combustion of fuel takes place at a power station that feeds the electrical grid. The electrical energy flows hundreds of kilometres and goes through many conversion stages before it reaches the locomotive. The electrical locomotive has to share its source of energy with homes, offices, factories and other systems that are connected to the grid. Once again a power electronic converter in the locomotive controls the flow of electrical energy from...<
/p>


Technik

Dieses eBook wird im epub-Format geliefert und ist mit einem Adobe DRM-Kopierschutz versehen.

Sie können dieses eBook auf vielen gängigen Endgeräten lesen.

Für welche Geräte?
Sie können das eBook auf allen Lesegeräten, in Apps und in Lesesoftware öffnen, die epub und Adobe DRM unterstützen:

  • tolino Reader
    Öffnen Sie das eBook nach der automatischen Synchronisation auf dem Reader oder übertragen Sie es manuell auf Ihr tolino Gerät mit der kostenlosen Software Adobe Digital Editions.

  • Andere eBook Reader
    Laden Sie das eBook direkt auf dem Reader im Hugendubel.de-Shop herunter oder übertragen Sie es mit der kostenlosen Software Sony READER FOR PC/Mac oder Adobe Digital Editions.

  • Für Tablets und Smartphones: Unsere Gratis tolino Lese-App
         

  • PC und Mac
    Lesen Sie das eBook direkt nach dem Herunterladen über "Jetzt lesen" im Browser, oder mit der kostenlosen Lesesoftware Adobe Digital Editions.

Schalten Sie das eBook mit Ihrer persönlichen Adobe ID auf bis zu sechs Geräten gleichzeitig frei.

Bitte beachten Sie: Dieses eBook ist nicht auf Kindle-Geräten lesbar.

Neukunde

Ihr erstes eBook?
Hier erhalten Sie alle Informationen rund um die digitalen Bücher für Neueinsteiger.

Mehr aus dieser Reihe

zurück
Circuit Oriented Electromagnetic Modeling Using the PEEC Techniques
eBook epub
von Albert Ruehli, G…
Chaos Analysis and Chaotic EMI Suppression of DC-DC Converters
eBook epub
von Bo Zhang, Xuemei…
Theory and Computation of Electromagnetic Fields
eBook epub
von Jian-Ming Jin
Engineering Quantum Mechanics
eBook epub
von Doyeol Ahn, Seou…
3DTV Content Capture, Encoding and Transmission
eBook epub
von Daniel Minoli
vor
Servicehotline
089 - 70 80 99 47

Mo. - Fr. 8.00 - 20.00 Uhr
Sa. 10.00 - 20.00 Uhr
Filialhotline
089 - 30 75 75 75

Mo. - Sa. 9.00 - 20.00 Uhr
Bleiben Sie in Kontakt:
Sicher & bequem bezahlen:
akzeptierte Zahlungsarten: Überweisung, offene Rechnung,
Visa, Master Card, American Express, Paypal
Zustellung durch:
1 Mängelexemplare sind Bücher mit leichten Beschädigungen, die das Lesen aber nicht einschränken. Mängelexemplare sind durch einen Stempel als solche gekennzeichnet. Die frühere Buchpreisbindung ist aufgehoben. Angaben zu Preissenkungen beziehen sich auf den gebundenen Preis eines mangelfreien Exemplars.

2 Diese Artikel unterliegen nicht der Preisbindung, die Preisbindung dieser Artikel wurde aufgehoben oder der Preis wurde vom Verlag gesenkt. Die jeweils zutreffende Alternative wird Ihnen auf der Artikelseite dargestellt. Angaben zu Preissenkungen beziehen sich auf den vorherigen Preis.

3 Ihr Gutschein TONIE10 gilt bis einschließlich 31.07.2020. Sie können den Gutschein ausschließlich online einlösen unter www.hugendubel.de. Keine Bestellung zur Abholung in der Buchhandlung möglich. Der Gutschein gilt nur auf Tonie-Figuren, Tonie-Transporter und Lauscher und nur solange der Vorrat reicht. Der Gutschein ist nicht mit anderen Gutscheinen und Geschenkkarten kombinierbar. Eine Barauszahlung ist nicht möglich. Ein Weiterverkauf und der Handel des Gutscheincodes sind nicht gestattet.

4 Der gebundene Preis dieses Artikels wird nach Ablauf des auf der Artikelseite dargestellten Datums vom Verlag angehoben.

5 Der Preisvergleich bezieht sich auf die unverbindliche Preisempfehlung (UVP) des Herstellers.

6 Der gebundene Preis dieses Artikels wurde vom Verlag gesenkt. Angaben zu Preissenkungen beziehen sich auf den vorherigen Preis.

7 Die Preisbindung dieses Artikels wurde aufgehoben. Angaben zu Preissenkungen beziehen sich auf den vorherigen Preis.

* Alle Preise verstehen sich inkl. der gesetzlichen MwSt. Informationen über den Versand und anfallende Versandkosten finden Sie hier.