Bücher versandkostenfrei*100 Tage RückgaberechtAbholung in der Wunschfiliale
NEU: Das Hugendubel Hörbuch Abo - jederzeit, überall, für nur 7,95 € monatlich!
Jetzt entdecken
mehr erfahren
Produktbild: Math for Deep Learning | Ronald T. Kneusel
Produktbild: Math for Deep Learning | Ronald T. Kneusel

Math for Deep Learning

What You Need to Know to Understand Neural Networks

(0 Bewertungen)15
465 Lesepunkte
Buch (kartoniert)
Buch (kartoniert)
46,49 €inkl. Mwst.
Zustellung: Fr, 05.09. - Mo, 08.09.
Sofort lieferbar
Versandkostenfrei
Empfehlen
To truly understand the power of deel learning, you need to grasp the mathematical concepts that make it tick. "Math for deep learning" will give you a working knowledge of probability, statistics, linear algebra, and differential calculus-- the essential math subfields required to practice deep learning successfully. Each subfield is explained with Python code and hands-on, real-world examples that bridge the gap between pure mathematics and its applications in deep learning. The book begins with fundamentals such as Bayes' theorem before progressing to more advanced concepts like training neural networks using vectors, matrices, and derivatives of functions. You'll then put all this math to use as you explore and implement backpropagation and gradient descent-- the foundational algorithms that have enabled the AI revolution.

Inhaltsverzeichnis

Introduction
Chapter 1: Setting the Stage
Chapter 2: Probability
Chapter 3: More Probability
Chapter 4: Statistics
Chapter 5: Linear Algebra
Chapter 6: More Linear Algebra
Chapter 7: Differential Calculus
Chapter 8: Matrix Calculus
Chapter 9: Data Flow in Neural Networks
Chapter 10: Backpropagation
Chapter 11: Gradient Descent
Appendix: Going Further

Produktdetails

Erscheinungsdatum
07. Dezember 2021
Sprache
englisch
Seitenanzahl
XXV
Autor/Autorin
Ronald T. Kneusel
Verlag/Hersteller
Produktart
kartoniert
Gewicht
562 g
Größe (L/B/H)
232/177/24 mm
ISBN
9781718501904

Portrait

Ronald T. Kneusel

Ronald T. Kneusel earned a PhD in machine learning from the University of Colorado, Boulder. He has over 20 years of machine learning industry experience. Kneusel is also the author of Numbers and Computers (2nd ed. , Springer 2017), Random Numbers and Computers (Springer 2018), and Practical Deep Learning: A Python-Based Introduction (No Starch Press 2021).

Pressestimmen

"An excellent resource for anyone looking to gain a solid foundation in the mathematics underlying deep learning algorithms. The book is accessible, well-organized, and provides clear explanations and practical examples of key mathematical concepts. I highly recommend it to anyone interested in this field."
Daniel Gutierrez, insideBIGDATA

"Ronald T. Kneusel has written a handy and compact guide to the mathematics of deep learning. It will be a well-worn reference for equations and algorithms for the student, scientist, and practitioner of neural networks and machine learning. Complete with equations, figures and even sample code in Python, this book is a wonderful mathematical introduction for the reader."
David S. Mazel, Senior Engineer, Regulus-Group

"What makes Math for Deep Learning a stand-out, is that it focuses on providing a sufficient mathematical foundation for deep learning, rather than attempting to cover all of deep learning, and introduce the needed math along the way. Those eager to master deep learning are sure to benefit from this foundation-before-house approach."
Ed Scott, Ph. D. , Solutions Architect & IT Enthusiast

Bewertungen

0 Bewertungen

Es wurden noch keine Bewertungen abgegeben. Schreiben Sie die erste Bewertung zu "Math for Deep Learning" und helfen Sie damit anderen bei der Kaufentscheidung.

Ronald T. Kneusel: Math for Deep Learning bei hugendubel.de. Online bestellen oder in der Filiale abholen.